亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The Arrhenius Equation Revisited

阿累尼乌斯方程 热力学 活化能 化学 结构方程建模 数学 物理化学 统计 物理
作者
Micha Peleg,Mark D. Normand,Maria G. Corradini
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:52 (9): 830-851 被引量:310
标识
DOI:10.1080/10408398.2012.667460
摘要

The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助hll采纳,获得10
6秒前
9秒前
斯文败类应助YDX采纳,获得10
9秒前
123123123完成签到,获得积分10
10秒前
上官若男应助z123456采纳,获得10
14秒前
16秒前
YDX发布了新的文献求助10
21秒前
22秒前
Sea_moon完成签到,获得积分10
23秒前
26秒前
笨笨三颜完成签到,获得积分10
28秒前
29秒前
陈陈发布了新的文献求助10
29秒前
30秒前
笨笨三颜发布了新的文献求助10
32秒前
迪仔完成签到 ,获得积分10
32秒前
村上春树的摩的完成签到 ,获得积分10
33秒前
zhongbo发布了新的文献求助10
35秒前
华仔应助完美的jia采纳,获得10
39秒前
上官若男应助笨笨三颜采纳,获得10
39秒前
56秒前
正直的冬灵完成签到,获得积分10
1分钟前
田子廉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助轻松的飞阳采纳,获得10
1分钟前
1分钟前
辉夜折影完成签到,获得积分10
1分钟前
笨笨三颜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
无极2023完成签到 ,获得积分10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
尊敬的凝丹完成签到 ,获得积分10
1分钟前
1分钟前
alaa发布了新的文献求助10
1分钟前
1分钟前
可爱的函函应助小马采纳,获得10
1分钟前
面影如春完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872