The Arrhenius Equation Revisited

阿累尼乌斯方程 热力学 活化能 化学 结构方程建模 数学 物理化学 统计 物理
作者
Micha Peleg,Mark D. Normand,Maria G. Corradini
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:52 (9): 830-851 被引量:310
标识
DOI:10.1080/10408398.2012.667460
摘要

The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉拉发布了新的文献求助10
刚刚
李大姐发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
勤奋的小伙完成签到,获得积分10
1秒前
1秒前
科研通AI6.1应助Yely采纳,获得10
1秒前
研友_VZG7GZ应助平淡菠萝采纳,获得10
1秒前
离郢完成签到 ,获得积分10
2秒前
2秒前
太阳雨发布了新的文献求助10
2秒前
lllllll完成签到,获得积分10
3秒前
117完成签到 ,获得积分10
3秒前
HOPE完成签到,获得积分10
4秒前
tttt发布了新的文献求助10
4秒前
4秒前
kk发布了新的文献求助10
4秒前
wanci应助若即若离采纳,获得10
4秒前
5秒前
吉吉国王饲养员完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
5秒前
酵母君完成签到,获得积分10
6秒前
YZ完成签到,获得积分10
6秒前
BowieHuang应助拉拉采纳,获得10
6秒前
6666应助拉拉采纳,获得10
6秒前
6秒前
imp发布了新的文献求助10
6秒前
轻风完成签到,获得积分20
7秒前
7秒前
大意的罡发布了新的文献求助10
7秒前
Tyw发布了新的文献求助10
8秒前
诚心熊猫完成签到,获得积分10
8秒前
8秒前
俊秀的海云完成签到,获得积分10
8秒前
科目三应助l123采纳,获得10
8秒前
Hello应助zzh采纳,获得10
8秒前
3D完成签到,获得积分10
8秒前
酷酷的小鸽子完成签到,获得积分10
9秒前
9秒前
科研通AI6.1应助华冰采纳,获得10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214