The Arrhenius Equation Revisited

阿累尼乌斯方程 热力学 活化能 化学 结构方程建模 数学 物理化学 统计 物理
作者
Micha Peleg,Mark D. Normand,Maria G. Corradini
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:52 (9): 830-851 被引量:310
标识
DOI:10.1080/10408398.2012.667460
摘要

The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
暮色晚钟完成签到,获得积分10
3秒前
3秒前
领导范儿应助LWJ采纳,获得10
3秒前
3秒前
彭于晏应助清风采纳,获得10
3秒前
穆清完成签到,获得积分10
5秒前
bkagyin应助Galen采纳,获得10
5秒前
蟒玉朝天完成签到 ,获得积分10
5秒前
Market123580完成签到 ,获得积分10
5秒前
充电宝应助文静梦芝采纳,获得10
6秒前
研友_VZG7GZ应助shukq采纳,获得10
6秒前
6秒前
漂亮的黑猫完成签到,获得积分10
6秒前
知虾关注了科研通微信公众号
6秒前
科研通AI6.1应助素衣采纳,获得10
7秒前
jeff发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
嗒嗒发布了新的文献求助10
8秒前
9秒前
Treasure发布了新的文献求助10
9秒前
Hello应助WY采纳,获得10
9秒前
留胡子的裘完成签到 ,获得积分10
10秒前
漂亮的如花完成签到,获得积分10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
赵翊发布了新的文献求助10
12秒前
13秒前
CipherSage应助dddddddd采纳,获得30
14秒前
尹二发布了新的文献求助10
14秒前
科研通AI2S应助ylh采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
情怀应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785018
求助须知:如何正确求助?哪些是违规求助? 5684842
关于积分的说明 15466115
捐赠科研通 4913942
什么是DOI,文献DOI怎么找? 2645068
邀请新用户注册赠送积分活动 1592871
关于科研通互助平台的介绍 1547270