亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography

医学 算法 人工智能 支持向量机 狭窄 放射科 计算机断层血管造影 动脉 接收机工作特性 血管造影 计算机科学 内科学
作者
Dong‐Woo Kang,Damini Dey,Piotr J. Slomka,Reza Arsanjani,Ryo Nakazato,Hyunsuk Ko,Daniel S. Berman,Debiao Li,C.‐C. Jay Kuo
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:2 (1): 014003-014003 被引量:96
标识
DOI:10.1117/1.jmi.2.1.014003
摘要

Visual identification of coronary arterial lesion from three-dimensional coronary computed tomography angiography (CTA) remains challenging. We aimed to develop a robust automated algorithm for computer detection of coronary artery lesions by machine learning techniques. A structured learning technique is proposed to detect all coronary arterial lesions with stenosis [Formula: see text]. Our algorithm consists of two stages: (1) two independent base decisions indicating the existence of lesions in each arterial segment and (b) the final decision made by combining the base decisions. One of the base decisions is the support vector machine (SVM) based learning algorithm, which divides each artery into small volume patches and integrates several quantitative geometric and shape features for arterial lesions in each small volume patch by SVM algorithm. The other base decision is the formula-based analytic method. The final decision in the first stage applies SVM-based decision fusion to combine the two base decisions in the second stage. The proposed algorithm was applied to 42 CTA patient datasets, acquired with dual-source CT, where 21 datasets had 45 lesions with stenosis [Formula: see text]. Visual identification of lesions with stenosis [Formula: see text] by three expert readers, using consensus reading, was considered as a reference standard. Our method performed with high sensitivity (93%), specificity (95%), and accuracy (94%), with receiver operator characteristic area under the curve of 0.94. The proposed algorithm shows promising results in the automated detection of obstructive and nonobstructive lesions from CTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子发布了新的文献求助10
1秒前
zqq完成签到,获得积分0
8秒前
就叫希望吧完成签到 ,获得积分10
25秒前
柚子完成签到,获得积分10
30秒前
SciGPT应助强强采纳,获得10
50秒前
1分钟前
强强发布了新的文献求助10
1分钟前
Ayaponzu111完成签到,获得积分10
1分钟前
曙光完成签到,获得积分10
1分钟前
1分钟前
在水一方应助强强采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
哈哈哈发布了新的文献求助10
2分钟前
2分钟前
强强发布了新的文献求助10
2分钟前
哈哈哈完成签到,获得积分10
2分钟前
2分钟前
2分钟前
强强完成签到,获得积分10
2分钟前
2分钟前
善学以致用应助包容采纳,获得30
2分钟前
2分钟前
yue完成签到,获得积分20
2分钟前
烟消云散完成签到,获得积分10
2分钟前
2分钟前
科研通AI5应助清新的冷松采纳,获得10
3分钟前
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
飞快的水云完成签到,获得积分10
3分钟前
Agernon应助超人不会飞采纳,获得10
3分钟前
3分钟前
小四月发布了新的文献求助10
3分钟前
3分钟前
4分钟前
华鹊鹊发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526536
求助须知:如何正确求助?哪些是违规求助? 3106959
关于积分的说明 9281972
捐赠科研通 2804528
什么是DOI,文献DOI怎么找? 1539486
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709579