IMM estimator based on fuzzy weighted input estimation for tracking a maneuvering target

加速度 估计员 控制理论(社会学) 卡尔曼滤波器 模糊逻辑 加权 数学 常量(计算机编程) 跟踪(教育) 计算机科学 算法 人工智能 统计 经典力学 医学 物理 放射科 教育学 心理学 程序设计语言 控制(管理)
作者
Yung-Lung Lee,Yiwei Chen
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:39 (19): 5791-5802 被引量:15
标识
DOI:10.1016/j.apm.2015.02.031
摘要

The application of target motion models and filters for interactive multiple model (IMM) estimator determines the effectiveness of maneuvering target tracking. In this paper, the fuzzy logic theory is utilized to construct the fuzzy weighting factor to improve the input estimation method and that is used to compute the unknown acceleration input for the modified Singer acceleration model. The proposed IMM estimator is operated mainly by two different target motion models combined with filters and the switch of target models is through the Markov transition probability matrix. The constant velocity model is combined with Kalman filter for the uniform target state estimation and the other one uses the modified Singer acceleration model to track the maneuvering target by the fuzzy weighted input estimation method. The performance of the proposed algorithm is verified by two different scenarios and compared with two IMM estimators. The target motion state of simulation condition contains the constant velocity, weak acceleration and strong acceleration. The simulation results show that the proposed IMM estimator has the better estimation precision in terms of tracking error. The modified Singer acceleration model combined with the fuzzy weighted input estimation method can track the maneuvering target effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
倒逆之蝶应助科研通管家采纳,获得10
刚刚
静好发布了新的文献求助10
刚刚
思源应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
倒逆之蝶应助科研通管家采纳,获得10
刚刚
麻婆肉丝发布了新的文献求助10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
Gstar发布了新的文献求助10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
倒逆之蝶应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
czt完成签到,获得积分10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
hulahula发布了新的文献求助10
1秒前
Bennyz完成签到,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
lily发布了新的文献求助10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927