Biasing reaction pathways with mechanical force

旋转的和不旋转的 聚合物 势能面 化学反应 化学物理 分子 势能 化学 产量(工程) 化学能 激发态 机械化学 共价键 反作用坐标 材料科学 光化学 戒指(化学) 物理 纳米技术 计算化学 原子物理学 有机化学 复合材料
作者
Charles R. Hickenboth,Jeffrey S. Moore,Scott R. White,Nancy R. Sottos,Jérôme Baudry,Scott R. Wilson
出处
期刊:Nature [Nature Portfolio]
卷期号:446 (7134): 423-427 被引量:784
标识
DOI:10.1038/nature05681
摘要

For most chemical reactions to proceed the reactants need to surmount an energy barrier. The energy required is usually provided as heat, light, pressure or electrical potential. Now mechanical force can be added to that list: to the surprise of many a chemist, a reaction can literally be given a shove. In specially designed polymers subjected to ultrasound, rearrangement reactions are accelerated and reaction pathways can be biased to yield products not obtainable from heat- or light-induced reactions. The polymers contain a mechanophore positioned at a site where forces from extensional flow are greatest. Besides offering new ways of controlling chemical reactions, this work may also lead to mechanically adaptable materials, polymers that might generate a signal to warn of impending damage, undergo structure modification to slow the rate of damage, or even self-repair. Carefully designed 'mechanophores' can tame the 'brute force' approach needed for breaking chemical bonds in reactions. If incorporated into polymers and activated by mechanical forces, the mechanophores undergo rearrangement reactions to selectively form new molecules. The effect might result in mechanically responsive polymers that warn of impending structural failures, can slow damage or even self-repair. During the course of chemical reactions, reactant molecules need to surmount an energy barrier to allow their transformation into products. The energy needed for this process is usually provided by heat, light, pressure or electrical potential, which act either by changing the distribution of the reactants on their ground-state potential energy surface or by moving them onto an excited-state potential energy surface and thereby facilitate movement over the energy barrier. A fundamentally different way of initiating or accelerating a reaction is the use of force to deform reacting molecules along a specific direction of the reaction coordinate. Mechanical force has indeed been shown to activate covalent bonds in polymers, but the usual result is chain scission1. Here we show that mechanically sensitive chemical groups make it possible to harness the mechanical forces generated when exposing polymer solutions to ultrasound2, and that this allows us to accelerate rearrangement reactions and bias reaction pathways to yield products not obtainable from purely thermal or light-induced reactions. We find that when placed within long polymer strands, the trans and cis isomers of a 1,2-disubstituted benzocyclobutene undergo an ultrasound-induced electrocyclic ring opening in a formally conrotatory and formally disrotatory process, respectively, that yield identical products. This contrasts with reaction initiation by light or heat alone3, in which case the isomers follow mutually exclusive pathways to different products. Mechanical forces associated with ultrasound can thus clearly alter the shape of potential energy surfaces4 so that otherwise forbidden or slow processes proceed under mild conditions, with the directionally specific nature of mechanical forces providing a reaction control that is fundamentally different from that achieved by adjusting chemical or physical parameters. Because rearrangement in our system occurs before chain scission, the effect we describe might allow the development of materials that are activated by mechanical stress fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Arctic完成签到,获得积分10
刚刚
WWD发布了新的文献求助10
刚刚
Ancient完成签到,获得积分10
刚刚
赖长杰完成签到,获得积分10
刚刚
lii应助温润如玉坤采纳,获得10
刚刚
zhangxinan完成签到,获得积分10
刚刚
yuanhao发布了新的文献求助10
1秒前
1秒前
1秒前
israr完成签到,获得积分10
2秒前
俊逸海豚发布了新的文献求助10
2秒前
shenqueying完成签到,获得积分10
2秒前
2秒前
zoe完成签到 ,获得积分10
2秒前
超帅沂发布了新的文献求助10
3秒前
苏杉杉发布了新的文献求助10
3秒前
3秒前
3秒前
polestar发布了新的文献求助10
4秒前
4秒前
4秒前
ForComposites发布了新的文献求助10
5秒前
颜琪发布了新的文献求助10
5秒前
6秒前
6秒前
松松完成签到,获得积分20
6秒前
lileilei完成签到,获得积分10
6秒前
张建发布了新的文献求助10
6秒前
知12发布了新的文献求助10
6秒前
sci完成签到 ,获得积分10
7秒前
飞飞飞发布了新的文献求助10
7秒前
Oreaee完成签到,获得积分10
7秒前
脆皮小小酥完成签到,获得积分10
7秒前
汉堡包应助苏杉杉采纳,获得10
8秒前
彭于晏应助yyyxxx采纳,获得10
8秒前
周围发布了新的文献求助10
8秒前
巴啦啦能量完成签到,获得积分10
9秒前
ddk六发布了新的文献求助10
9秒前
好叭完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650