Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters via a Genetic Algorithm Driven by Kissinger’s Method

炭化 热解 热重分析 材料科学 热重分析 动力学 动能 动力学方案 热力学 生物系统 化学工程 复合材料 化学 有机化学 物理 量子力学 生物 工程类
作者
Kai-Yuan Li,Xinyan Huang,Charles Fleischmann,Guillermo Rein,Jie Ji
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:28 (9): 6130-6139 被引量:183
标识
DOI:10.1021/ef501380c
摘要

The pyrolysis kinetics of charring materials plays an important role in understanding material combustions especially for construction materials with complex degradation chemistry. Thermogravimetric analysis (TGA) is frequently used to study the heterogeneous kinetics of solid fuels; however, there is no agreed method to determine the pyrolysis scheme and kinetic parameters for charring polymers with multiple components and competing reaction pathways. This study develops a new technique to estimate the possible numbers of species and sub-reactions in pyrolysis by analyzing the second derivatives of thermogravimetry (DDTG) curves. The pyrolysis of a medium-density fiberboard (MDF) in nitrogen is studied in detail, and the DDTG curves are used to locate the temperature of the peak mass-loss rate for each sub-reaction. Then, on the basis of the TG data under multiple heating rates, Kissinger's method is used to quickly find the possible range of values of the kinetic parameters (A and E). These ranges are used to accelerate the optimization of the inverse problem using a genetic algorithm (GA) for the kinetic and stoichiometric parameters. The proposed method and kinetic scheme found are shown to match the experimental data and are able to predict accurately results at different heating rates better than Kissinger's method. Moreover, the search method (K–K method) is highly efficient, faster than the regular GA search alone. Modeling results show that, as the TG data available increase, the interdependence among kinetic parameters becomes weak and the accuracy of the first-order model declines. Furthermore, conducting TG experiment under multiple heating rates is found to be crucial in obtaining good kinetic parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chendacai完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
范炎炎完成签到,获得积分10
2秒前
eric888应助机灵饼干采纳,获得150
2秒前
2秒前
文艺涵瑶发布了新的文献求助10
3秒前
3秒前
万木春完成签到 ,获得积分10
3秒前
4秒前
garden发布了新的文献求助10
4秒前
5秒前
TIAn关注了科研通微信公众号
5秒前
xiaocen发布了新的文献求助10
7秒前
8秒前
8秒前
wanci应助选波采纳,获得10
8秒前
香蕉觅云应助负责秋天采纳,获得10
9秒前
轻松戎发布了新的文献求助10
9秒前
unique发布了新的文献求助10
11秒前
11秒前
11秒前
Hsia完成签到,获得积分10
12秒前
Gabriel发布了新的文献求助10
12秒前
12秒前
Hello应助快乐再出发采纳,获得20
12秒前
13秒前
零医完成签到,获得积分10
13秒前
h3m发布了新的文献求助10
13秒前
13秒前
Zx_1993应助GINNY采纳,获得20
13秒前
13秒前
阿柒发布了新的文献求助10
14秒前
14秒前
Jian完成签到,获得积分10
14秒前
Criminology34应助轻松戎采纳,获得10
14秒前
xiaocen完成签到,获得积分10
15秒前
科研通AI6应助lulu采纳,获得10
15秒前
吕小布12完成签到,获得积分20
16秒前
李健应助略略略采纳,获得10
16秒前
yangyajie发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430823
求助须知:如何正确求助?哪些是违规求助? 4543941
关于积分的说明 14189780
捐赠科研通 4462379
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437962
关于科研通互助平台的介绍 1414553