Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters via a Genetic Algorithm Driven by Kissinger’s Method

炭化 热解 热重分析 材料科学 热重分析 动力学 动能 动力学方案 热力学 生物系统 化学工程 复合材料 化学 有机化学 物理 量子力学 生物 工程类
作者
Kai-Yuan Li,Xinyan Huang,Charles Fleischmann,Guillermo Rein,Jie Ji
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:28 (9): 6130-6139 被引量:183
标识
DOI:10.1021/ef501380c
摘要

The pyrolysis kinetics of charring materials plays an important role in understanding material combustions especially for construction materials with complex degradation chemistry. Thermogravimetric analysis (TGA) is frequently used to study the heterogeneous kinetics of solid fuels; however, there is no agreed method to determine the pyrolysis scheme and kinetic parameters for charring polymers with multiple components and competing reaction pathways. This study develops a new technique to estimate the possible numbers of species and sub-reactions in pyrolysis by analyzing the second derivatives of thermogravimetry (DDTG) curves. The pyrolysis of a medium-density fiberboard (MDF) in nitrogen is studied in detail, and the DDTG curves are used to locate the temperature of the peak mass-loss rate for each sub-reaction. Then, on the basis of the TG data under multiple heating rates, Kissinger's method is used to quickly find the possible range of values of the kinetic parameters (A and E). These ranges are used to accelerate the optimization of the inverse problem using a genetic algorithm (GA) for the kinetic and stoichiometric parameters. The proposed method and kinetic scheme found are shown to match the experimental data and are able to predict accurately results at different heating rates better than Kissinger's method. Moreover, the search method (K–K method) is highly efficient, faster than the regular GA search alone. Modeling results show that, as the TG data available increase, the interdependence among kinetic parameters becomes weak and the accuracy of the first-order model declines. Furthermore, conducting TG experiment under multiple heating rates is found to be crucial in obtaining good kinetic parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
玺月洛离发布了新的文献求助10
1秒前
MrLiu完成签到,获得积分10
2秒前
科研通AI2S应助勤奋的风华采纳,获得10
2秒前
2秒前
3秒前
丸子完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
dddd发布了新的文献求助10
6秒前
气味发布了新的文献求助10
7秒前
故里发布了新的文献求助10
8秒前
yu完成签到,获得积分10
8秒前
一二三完成签到,获得积分20
8秒前
繁星完成签到,获得积分10
9秒前
NexusExplorer应助剪影改采纳,获得10
9秒前
9秒前
我是老大应助dddd采纳,获得10
10秒前
嘻哈hang应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
FIN应助科研通管家采纳,获得10
12秒前
yolo39应助完美的幻悲采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Orange应助科研通管家采纳,获得10
12秒前
FIN应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得30
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
13秒前
大个应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
呵呵心情发布了新的文献求助10
14秒前
dddd完成签到,获得积分10
14秒前
弹棉花完成签到,获得积分10
14秒前
科研通AI2S应助陈年大苏打采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264