Pyrolysis of Medium-Density Fiberboard: Optimized Search for Kinetics Scheme and Parameters via a Genetic Algorithm Driven by Kissinger’s Method

炭化 热解 热重分析 材料科学 热重分析 动力学 动能 动力学方案 热力学 生物系统 化学工程 复合材料 化学 有机化学 物理 量子力学 生物 工程类
作者
Kai-Yuan Li,Xinyan Huang,Charles Fleischmann,Guillermo Rein,Jie Ji
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:28 (9): 6130-6139 被引量:183
标识
DOI:10.1021/ef501380c
摘要

The pyrolysis kinetics of charring materials plays an important role in understanding material combustions especially for construction materials with complex degradation chemistry. Thermogravimetric analysis (TGA) is frequently used to study the heterogeneous kinetics of solid fuels; however, there is no agreed method to determine the pyrolysis scheme and kinetic parameters for charring polymers with multiple components and competing reaction pathways. This study develops a new technique to estimate the possible numbers of species and sub-reactions in pyrolysis by analyzing the second derivatives of thermogravimetry (DDTG) curves. The pyrolysis of a medium-density fiberboard (MDF) in nitrogen is studied in detail, and the DDTG curves are used to locate the temperature of the peak mass-loss rate for each sub-reaction. Then, on the basis of the TG data under multiple heating rates, Kissinger's method is used to quickly find the possible range of values of the kinetic parameters (A and E). These ranges are used to accelerate the optimization of the inverse problem using a genetic algorithm (GA) for the kinetic and stoichiometric parameters. The proposed method and kinetic scheme found are shown to match the experimental data and are able to predict accurately results at different heating rates better than Kissinger's method. Moreover, the search method (K–K method) is highly efficient, faster than the regular GA search alone. Modeling results show that, as the TG data available increase, the interdependence among kinetic parameters becomes weak and the accuracy of the first-order model declines. Furthermore, conducting TG experiment under multiple heating rates is found to be crucial in obtaining good kinetic parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCC发布了新的文献求助30
刚刚
刚刚
打打应助自由的中蓝采纳,获得10
刚刚
显隐发布了新的文献求助10
刚刚
显隐发布了新的文献求助10
刚刚
显隐发布了新的文献求助10
刚刚
显隐发布了新的文献求助10
刚刚
MZT完成签到,获得积分10
1秒前
9986发布了新的文献求助10
1秒前
科研大王完成签到,获得积分10
1秒前
miaomiao发布了新的文献求助10
1秒前
2秒前
田様应助张zhang采纳,获得10
3秒前
艾妮吗发布了新的文献求助10
3秒前
纳米酶催化完成签到,获得积分10
3秒前
脑洞疼应助顺心白翠采纳,获得10
4秒前
Linda完成签到,获得积分10
4秒前
xue发布了新的文献求助10
6秒前
碧蓝可仁完成签到 ,获得积分10
6秒前
7秒前
ceds完成签到,获得积分10
7秒前
7秒前
8秒前
Luna完成签到 ,获得积分10
8秒前
XinyuLu完成签到,获得积分10
8秒前
ewan2018完成签到,获得积分10
9秒前
Aurora的努力日记完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
AAA专业修蹄车师傅完成签到,获得积分10
10秒前
11秒前
11秒前
余如龙完成签到,获得积分10
11秒前
11秒前
yznfly应助5552222采纳,获得300
11秒前
田様应助小鱼干采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
所所应助William采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478622
求助须知:如何正确求助?哪些是违规求助? 4580239
关于积分的说明 14372881
捐赠科研通 4508614
什么是DOI,文献DOI怎么找? 2470795
邀请新用户注册赠送积分活动 1457548
关于科研通互助平台的介绍 1431443