数学
结(造纸)
花键(机械)
变量(数学)
多项式的
模糊逻辑
学位(音乐)
应用数学
亚历山大多项式
数学分析
纽结理论
计算机科学
人工智能
声学
化学工程
结构工程
物理
工程类
作者
Robin Lok-Ping Chang,Theodosios Pavlidis
标识
DOI:10.1016/0165-0114(79)90016-2
摘要
This paper presents several methods for functional approximation with variable-knot variable-degree splines, with variable-knot first order splines, which are relatively easy to find, as the intermediate input. By means of a fuzzy characteristic function determining how “sharp” the angle at each knot is (the higher the polynomial degree, the “sharper” its first order spline approximation bends), we can decide whether we can group certain adjacent segments together to be approximated by a single higher order polynomial segment. Some simulation experiments have also been done.
科研通智能强力驱动
Strongly Powered by AbleSci AI