亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral–Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model

判别式 模式识别(心理学) 人工智能 高光谱成像 计算机科学 稀疏逼近 像素 分类器(UML) K-SVD公司 上下文图像分类 数学 图像(数学)
作者
Leyuan Fang,Shutao Li,Xudong Kang,Jón Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 4186-4201 被引量:244
标识
DOI:10.1109/tgrs.2015.2392755
摘要

A novel superpixel-based discriminative sparse model (SBDSM) for spectral-spatial classification of hyperspectral images (HSIs) is proposed. Here, a superpixel in a HSI is considered as a small spatial region whose size and shape can be adaptively adjusted for different spatial structures. In the proposed approach, the SBDSM first clusters the HSI into many superpixels using an efficient oversegmentation method. Then, pixels within each superpixel are jointly represented by a set of common atoms from a dictionary via a joint sparse regularization. The recovered sparse coefficients are utilized to determine the class label of the superpixel. In addition, instead of directly using a large number of sampled pixels as dictionary atoms, the SBDSM applies a discriminative K-SVD learning algorithm to simultaneously train a compact representation dictionary, as well as a discriminative classifier. Furthermore, by utilizing the class label information of training pixels and dictionary atoms, a class-labeled orthogonal matching pursuit is proposed to accelerate the K-SVD algorithm while still enforcing high discriminability on sparse coefficients when training the classifier. Experimental results on four real HSI datasets demonstrate the superiority of the proposed SBDSM algorithm over several well-known classification approaches in terms of both classification accuracies and computational speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
ye发布了新的文献求助10
14秒前
faye完成签到 ,获得积分20
16秒前
18秒前
26秒前
28秒前
31秒前
37秒前
47秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助150
1分钟前
1分钟前
1分钟前
ye完成签到 ,获得积分10
1分钟前
Akim应助dew采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
虚幻沛菡发布了新的文献求助10
2分钟前
jie完成签到 ,获得积分10
2分钟前
cc完成签到,获得积分10
2分钟前
iDong完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
dew发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
xiuxiu发布了新的文献求助10
3分钟前
玩命的夏彤给玩命的夏彤的求助进行了留言
3分钟前
科研通AI5应助英勇兔子采纳,获得10
3分钟前
淡然的妙芙应助lezbj99采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5091497
求助须知:如何正确求助?哪些是违规求助? 4305806
关于积分的说明 13416100
捐赠科研通 4131518
什么是DOI,文献DOI怎么找? 2263164
邀请新用户注册赠送积分活动 1266984
关于科研通互助平台的介绍 1202128