亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral–Spatial Classification of Hyperspectral Images With a Superpixel-Based Discriminative Sparse Model

判别式 模式识别(心理学) 人工智能 高光谱成像 计算机科学 稀疏逼近 像素 分类器(UML) K-SVD公司 上下文图像分类 数学 图像(数学)
作者
Leyuan Fang,Shutao Li,Xudong Kang,Jón Atli Benediktsson
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:53 (8): 4186-4201 被引量:244
标识
DOI:10.1109/tgrs.2015.2392755
摘要

A novel superpixel-based discriminative sparse model (SBDSM) for spectral-spatial classification of hyperspectral images (HSIs) is proposed. Here, a superpixel in a HSI is considered as a small spatial region whose size and shape can be adaptively adjusted for different spatial structures. In the proposed approach, the SBDSM first clusters the HSI into many superpixels using an efficient oversegmentation method. Then, pixels within each superpixel are jointly represented by a set of common atoms from a dictionary via a joint sparse regularization. The recovered sparse coefficients are utilized to determine the class label of the superpixel. In addition, instead of directly using a large number of sampled pixels as dictionary atoms, the SBDSM applies a discriminative K-SVD learning algorithm to simultaneously train a compact representation dictionary, as well as a discriminative classifier. Furthermore, by utilizing the class label information of training pixels and dictionary atoms, a class-labeled orthogonal matching pursuit is proposed to accelerate the K-SVD algorithm while still enforcing high discriminability on sparse coefficients when training the classifier. Experimental results on four real HSI datasets demonstrate the superiority of the proposed SBDSM algorithm over several well-known classification approaches in terms of both classification accuracies and computational speed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
sxmt123456789完成签到,获得积分10
7秒前
赘婿应助hoojw采纳,获得10
8秒前
Zhao完成签到 ,获得积分10
9秒前
熊猫完成签到 ,获得积分10
10秒前
lqhccww发布了新的文献求助10
21秒前
研友_8yN60L完成签到,获得积分10
24秒前
ZB完成签到,获得积分10
28秒前
直率无声完成签到,获得积分10
30秒前
开朗满天完成签到,获得积分10
35秒前
深情安青应助lqhccww采纳,获得10
35秒前
牛八先生完成签到,获得积分10
38秒前
lu完成签到,获得积分10
42秒前
侧耳发布了新的文献求助10
44秒前
45秒前
激动的晓筠完成签到 ,获得积分10
45秒前
hh完成签到,获得积分10
46秒前
外向小猫咪完成签到,获得积分10
49秒前
静待花开发布了新的文献求助10
50秒前
文艺的枫叶完成签到 ,获得积分10
58秒前
meow完成签到 ,获得积分10
1分钟前
Jerry完成签到 ,获得积分10
1分钟前
打打应助121231233采纳,获得10
1分钟前
OrangeWang完成签到,获得积分10
1分钟前
OrangeWang发布了新的文献求助10
1分钟前
orixero应助我去吃饭采纳,获得10
1分钟前
1分钟前
小尾巴完成签到 ,获得积分10
1分钟前
1分钟前
大个应助Nature_Science采纳,获得10
1分钟前
zero完成签到 ,获得积分10
1分钟前
gty完成签到,获得积分10
1分钟前
bob完成签到 ,获得积分10
1分钟前
121231233发布了新的文献求助10
1分钟前
友好白凡发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866566
捐赠科研通 4706287
什么是DOI,文献DOI怎么找? 2542732
邀请新用户注册赠送积分活动 1508144
关于科研通互助平台的介绍 1472276