吸引子
数学
反应扩散系统
豪斯多夫空间
豪斯多夫维数
不变(物理)
非线性系统
分形维数
数学分析
分形
维数(图论)
应用数学
多项式的
纯数学
数学物理
物理
量子力学
标识
DOI:10.1080/00036818708839678
摘要
In this paper, we study some questions related to attractors for two types of reaction-diffusion equations : an equation with a polynomial growth nonlinearity and systems admitting a positively invariant region. For these problems, we prove the existence of a maximal attractor which describes the long-time behaviour of the solutions and we derive estimates of its Hausdorff and fractal dimensions in terms of the data. Our results are applied to several classical equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI