Development and Validation of a Clinical Prediction Model to Estimate the Probability of Malignancy in Solitary Pulmonary Nodules in Chinese People

医学 恶性肿瘤 逻辑回归 多元分析 接收机工作特性 置信区间 钙化 内科学 放射科 病历
作者
Yun Li,Kezhong Chen,Jun Wang
出处
期刊:Clinical Lung Cancer [Elsevier]
卷期号:12 (5): 313-319 被引量:74
标识
DOI:10.1016/j.cllc.2011.06.005
摘要

This study evaluated the clinical factors affecting the probability of malignancy of solitary pulmonary nodules (SPNs) using multivariate logistic regression analysis. A clinical prediction model was subsequently developed to estimate the probability of malignancy. This model was then validated.Medical records from 371 patients (197 men, 174 women) with a pathologic diagnosis of SPN made between January 2000 and September 2009, were reviewed. Clinical data were collected to estimate the independent predictors of malignancy of SPN with multivariate analysis. A clinical prediction model was subsequently created. Between October 2009 and March 2010, data from an additional 62 patients with a pathologic diagnosis of SPN were used to validate this clinical prediction model. The model was also compared with two previously described models.Median patient age was 57.1 years old. Fifty-three percent of the nodules were malignant and 46% were benign. Logistic regression analysis identified six clinical characteristics (age, diameter, border, calcification, spiculation, and family history of tumor) as independent predictors of malignancy in patients with SPN. The area under the receiver operating characteristic (ROC) curve for our model (0.89; 50% confidence interval [CI], 0.78-0.99) was higher than those generated using another two reported models. In our model, sensitivity was 92.5%, specificity was 81.8%,positive predictive value was 90.2%, and negative predictive value was 85.7%).Age of the patient, diameter, border, calcification, spiculation, and family history of tumors were independent predictors of malignancy in patients with SPN. Our prediction model was more accurate than the two existing models and was sufficient to estimate malignancy in patients with SPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
渊_发布了新的文献求助10
1秒前
FashionBoy应助雪芜采纳,获得10
3秒前
3秒前
蝉鸣夏日长完成签到,获得积分10
3秒前
4秒前
4秒前
CCXG发布了新的文献求助10
4秒前
李健的小迷弟应助weny采纳,获得10
7秒前
阿蛇完成签到,获得积分10
7秒前
于某人完成签到,获得积分10
7秒前
科研通AI2S应助害羞靖采纳,获得10
7秒前
晴空万里完成签到,获得积分10
8秒前
chenxy完成签到,获得积分10
8秒前
幽默思远完成签到,获得积分20
9秒前
10秒前
10秒前
renpp822完成签到,获得积分10
11秒前
偷懒发布了新的文献求助10
11秒前
K13完成签到,获得积分10
11秒前
魁梧的涵柏完成签到,获得积分10
12秒前
还好发布了新的文献求助10
12秒前
阿蛇发布了新的文献求助10
12秒前
科研发布了新的文献求助10
13秒前
zoey完成签到,获得积分10
15秒前
筱澍发布了新的文献求助10
16秒前
卡奇Mikey完成签到,获得积分10
17秒前
流沙发布了新的文献求助10
17秒前
19秒前
19秒前
铭铭铭发布了新的文献求助30
19秒前
成就小懒猪完成签到 ,获得积分10
20秒前
21秒前
22秒前
北北发布了新的文献求助20
24秒前
25秒前
鹿友菌完成签到,获得积分10
25秒前
竹筏过海应助斯文谷秋采纳,获得30
26秒前
Rose发布了新的文献求助10
26秒前
轻狂书生发布了新的文献求助10
27秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236178
求助须知:如何正确求助?哪些是违规求助? 2881896
关于积分的说明 8224233
捐赠科研通 2549884
什么是DOI,文献DOI怎么找? 1378686
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623891