Development and Validation of a Clinical Prediction Model to Estimate the Probability of Malignancy in Solitary Pulmonary Nodules in Chinese People

医学 恶性肿瘤 逻辑回归 多元分析 接收机工作特性 置信区间 钙化 内科学 放射科 病历
作者
Yun Li,Kezhong Chen,Jun Wang
出处
期刊:Clinical Lung Cancer [Elsevier BV]
卷期号:12 (5): 313-319 被引量:89
标识
DOI:10.1016/j.cllc.2011.06.005
摘要

This study evaluated the clinical factors affecting the probability of malignancy of solitary pulmonary nodules (SPNs) using multivariate logistic regression analysis. A clinical prediction model was subsequently developed to estimate the probability of malignancy. This model was then validated.Medical records from 371 patients (197 men, 174 women) with a pathologic diagnosis of SPN made between January 2000 and September 2009, were reviewed. Clinical data were collected to estimate the independent predictors of malignancy of SPN with multivariate analysis. A clinical prediction model was subsequently created. Between October 2009 and March 2010, data from an additional 62 patients with a pathologic diagnosis of SPN were used to validate this clinical prediction model. The model was also compared with two previously described models.Median patient age was 57.1 years old. Fifty-three percent of the nodules were malignant and 46% were benign. Logistic regression analysis identified six clinical characteristics (age, diameter, border, calcification, spiculation, and family history of tumor) as independent predictors of malignancy in patients with SPN. The area under the receiver operating characteristic (ROC) curve for our model (0.89; 50% confidence interval [CI], 0.78-0.99) was higher than those generated using another two reported models. In our model, sensitivity was 92.5%, specificity was 81.8%,positive predictive value was 90.2%, and negative predictive value was 85.7%).Age of the patient, diameter, border, calcification, spiculation, and family history of tumors were independent predictors of malignancy in patients with SPN. Our prediction model was more accurate than the two existing models and was sufficient to estimate malignancy in patients with SPN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的安白完成签到,获得积分10
刚刚
刚刚
u深度完成签到 ,获得积分10
1秒前
Atom完成签到,获得积分10
2秒前
尉迟三颜发布了新的文献求助10
2秒前
酱啊油完成签到,获得积分10
2秒前
ZR14124完成签到,获得积分10
3秒前
Miss67完成签到,获得积分10
3秒前
zdl完成签到,获得积分10
3秒前
4秒前
4秒前
南城花开完成签到 ,获得积分10
4秒前
苹果秋灵完成签到,获得积分10
5秒前
魏骜琦完成签到,获得积分10
5秒前
Jasper应助科研小白采纳,获得10
6秒前
强强强强完成签到,获得积分10
6秒前
zdl发布了新的文献求助10
6秒前
7秒前
自然的曲奇完成签到 ,获得积分10
7秒前
cloudyick完成签到,获得积分10
7秒前
7秒前
七七完成签到,获得积分10
7秒前
太叔白风完成签到,获得积分10
8秒前
321完成签到,获得积分10
8秒前
务实从阳完成签到,获得积分10
8秒前
大模型应助cyy1226采纳,获得10
9秒前
苹果秋灵发布了新的文献求助10
9秒前
10秒前
劉劉发布了新的文献求助30
10秒前
LegendThree完成签到,获得积分10
11秒前
包子牛奶完成签到,获得积分10
11秒前
11秒前
研友_8YVWPL发布了新的文献求助10
12秒前
12秒前
12秒前
飞翔的梦完成签到,获得积分10
12秒前
优秀剑愁完成签到 ,获得积分10
12秒前
WJ发布了新的文献求助10
13秒前
尤珩完成签到,获得积分10
13秒前
椰椰完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259