工程类
参数统计
结构工程
生存能力
海洋工程
光滑粒子流体力学
有限元法
过程(计算)
瞬态(计算机编程)
机械工程
计算机科学
航空航天工程
机械
统计
物理
数学
操作系统
作者
Rade Vignjević,Michał Orłowski,Tom De Vuyst,J. Campbell
标识
DOI:10.1016/j.ijimpeng.2013.04.003
摘要
Birds represent a major hazard to aviation. Especially bird ingestions by one or more engines, which can lead to significant power loss, are safety critical. Damage tolerant designs required by regulations should ensure the survivability of aircraft components under bird strike. At present, experiments and numerical simulations are used to aid design of bird strike resistant structures. These tests are very expensive and their number in the engine development process should be minimised. This is typically achieved through the use of numerical simulations, which provide an alternative to testing, and which can effectively support a significant part of the blade design process. However, bird strike tests still have to be performed in order to certify an engine for the bird ingestion. The simulation of bird strikes on engine blades, presented in this paper, was performed with an in-house Smoothed Particle Hydrodynamics (SPH) code coupled with a Transient Nonlinear Finite Element (Lawrence Livermore National Laboratory – DYNA3D) code. Treatment of contact between the bird (SPH particles) and the blade (FE mesh), was one of the key aspects in the bird strike analysis. The particle to node and the particle to surface contact algorithms, available in the code, were assessed and their performance compared. This was followed by a number of parametric studies including: influence of the bird shape; the bird impact location and impact timing. Simulation results from these studies were compared and validated against the final deformed shape of the blade recovered from the bird strike test.
科研通智能强力驱动
Strongly Powered by AbleSci AI