Ester Bond-containing Tea Polyphenols Potently Inhibit Proteasome Activity in Vitro and in Vivo

体内 多酚 体外 化学 生物化学 药理学 生物 抗氧化剂 生物技术
作者
Sangkil Nam,David M. Smith,Q. Ping Dou
出处
期刊:Journal of Biological Chemistry [Elsevier]
卷期号:276 (16): 13322-13330 被引量:484
标识
DOI:10.1074/jbc.m004209200
摘要

It has been discovered that proteasome inhibitors are able to induce tumor growth arrest or cell death and that tea consumption is correlated with cancer prevention. Here, we show that ester bond-containing tea polyphenols, such as (−)−epigallocatechin-3-gallate (EGCG), potently and specifically inhibit the chymotrypsin-like activity of the proteasome in vitro (IC50 = 86–194 nm) and in vivo (1–10 μm) at the concentrations found in the serum of green tea drinkers. Atomic orbital energy analyses and high performance liquid chromatography suggest that the carbon of the polyphenol ester bond is essential for targeting, thereby inhibiting the proteasome in cancer cells. This inhibition of the proteasome by EGCG in several tumor and transformed cell lines results in the accumulation of two natural proteasome substrates, p27Kip1and IκB-α, an inhibitor of transcription factor NF-κB, followed by growth arrest in the G1 phase of the cell cycle. Furthermore, compared with their simian virus-transformed counterpart, the parental normal human fibroblasts were much more resistant to EGCG-induced p27Kip1 protein accumulation and G1 arrest. Our study suggests that the proteasome is a cancer-related molecular target of tea polyphenols and that inhibition of the proteasome activity by ester bond-containing polyphenols may contribute to the cancer-preventative effect of tea. It has been discovered that proteasome inhibitors are able to induce tumor growth arrest or cell death and that tea consumption is correlated with cancer prevention. Here, we show that ester bond-containing tea polyphenols, such as (−)−epigallocatechin-3-gallate (EGCG), potently and specifically inhibit the chymotrypsin-like activity of the proteasome in vitro (IC50 = 86–194 nm) and in vivo (1–10 μm) at the concentrations found in the serum of green tea drinkers. Atomic orbital energy analyses and high performance liquid chromatography suggest that the carbon of the polyphenol ester bond is essential for targeting, thereby inhibiting the proteasome in cancer cells. This inhibition of the proteasome by EGCG in several tumor and transformed cell lines results in the accumulation of two natural proteasome substrates, p27Kip1and IκB-α, an inhibitor of transcription factor NF-κB, followed by growth arrest in the G1 phase of the cell cycle. Furthermore, compared with their simian virus-transformed counterpart, the parental normal human fibroblasts were much more resistant to EGCG-induced p27Kip1 protein accumulation and G1 arrest. Our study suggests that the proteasome is a cancer-related molecular target of tea polyphenols and that inhibition of the proteasome activity by ester bond-containing polyphenols may contribute to the cancer-preventative effect of tea. Previous epidemiological studies have suggested that tea consumption may have a protective effect against human cancer (1Fujiki H. J. Cancer Res. Clin. Oncol... 1999; 125: 589-597Google Scholar, 2Kuroda Y. Hara Y. Mutat. Res... 1999; 436: 69-97Google Scholar, 3Yang C.S. Nutrition.. 1999; 15: 946-949Google Scholar, 4Ahmad N. Mukhtar H. Nutr. Rev... 1999; 57: 78-83Google Scholar). Recent animal studies have also demonstrated that green tea polyphenols could suppress the formation and growth of human cancers, including skin (5Katiyar S.K. Challa A. McCormick T.S. Cooper K.D. Mukhtar H. Carcinogenesis.. 1999; 20: 2117-2124Google Scholar, 6Wang Z.Y. Huang M.T. Ferraro T. Wong C.Q. Lou Y.R. Reuhl K. Iatropoulos M. Yang C.S. Conney A.H. Cancer Res... 1992; 52: 1162-1170Google Scholar), lung (7Xu Y. Ho C.T. Amin S.G. Han C. Chung F.L. Cancer Res... 1992; 52: 3875-3879Google Scholar), liver (8Nishida H. Omori M. Fukutomi Y. Ninomiya M. Nishiwaki S. Suganuma M. Moriwaki H. Muto Y. Jpn. J. Cancer Res... 1994; 85: 221-225Google Scholar), esophagus (9Wang Z.Y. Wang L.D. Lee M.J. Ho C.T. Huang M.T. Conney A.H. Yang C.S. Carcinogenesis.. 1995; 16: 2143-2148Google Scholar), and stomach (10Yamane T. Takahashi T. Kuwata K. Oya K. Inagake M. Kitao Y. Suganuma M. Fujiki H. Cancer Res... 1995; 55: 2081-2084Google Scholar). The major components of green and black tea include epigallocatechin-3-gallate (EGCG)1, epigallocatechin (EGC), epicatechin-3-gallate (ECG), epicatechin (EC), and their epimers (see Fig. 1 A). EGCG among those polyphenols has been most extensively examined because of its relative abundance and strong cancer-preventive properties (1Fujiki H. J. Cancer Res. Clin. Oncol... 1999; 125: 589-597Google Scholar, 11Balentine D.A. Wiseman S.A. Bouwens L.C. Crit. Rev. Food Sci. Nutr... 1997; 37: 693-704Google Scholar). EGCG has been shown to inhibit several cancer-related proteins, including urokinase (12Jankun J. Selman S.H. Swiercz R. Skrzypczak-Jankun E. Nature.. 1997; 387: 561Google Scholar), nitric-oxide synthase (13Lin Y.L. Lin J.K. Mol. Pharmacol... 1997; 52: 465-472Google Scholar), teromerase (14Naasani I. Seimiya H. Tsuruo T. Biochem. Biophys. Res. Commun... 1998; 249: 391-396Google Scholar), and tumor necrosis factor-α (15Okabe S. Ochiai Y. Aida M. Park K. Kim S.J. Nomura T. Suganuma M. Fujiki H. Jpn J. Cancer Res... 1999; 90: 733-739Google Scholar). However, nonphysiological concentrations of EGCG (i.e., concentrations higher than those found in human serum after tea consumption) were used in some earlier studies. Whether one or more of these proteins are the real molecular targets of EGCG and other tea polyphenols under physiological conditions needs further investigations.The 20S proteasome, a multicatalytic complex (700 kDa), constitutes the catalytic key component of the ubiquitous proteolytic machinery 26S proteasome (16Groll M. Ditzel L. Lowe J. Stock D. Bochtler M. Bartunik H.D. Huber R. Nature.. 1997; 386: 463-471Google Scholar, 17Maupin-Furlow J.A. Ferry J.G. J. Biol. Chem... 1995; 270: 28617-28622Google Scholar, 18Goldberg A.L. Science.. 1995; 268: 522-523Google Scholar, 19Baumeister W. Walz J. Zuhl F. Seemuller E. Cell.. 1998; 92: 367-380Google Scholar, 20Heinemeyer W. Fischer M. Krimmer T. Stachon U. Wolf D.H. J. Biol. Chem... 1997; 272: 25200-25209Google Scholar). There are three major proteasomal activities: chymotrypsin-like, trypsin-like, and peptidyl-glutamyl peptide hydrolyzing (PGPH) activities (16Groll M. Ditzel L. Lowe J. Stock D. Bochtler M. Bartunik H.D. Huber R. Nature.. 1997; 386: 463-471Google Scholar, 21Loidl G. Groll M. Musiol H.J. Huber R. Moroder L. Proc. Natl. Acad. Sci. U. S. A... 1999; 96: 5418-5422Google Scholar). The ubiquitin-proteasome system plays a critical role in the specific degradation of cellular proteins (22Hochstrasser M. Curr. Opin. Cell Biol... 1995; 7: 215-223Google Scholar), and two of the proteasome functions are to allow tumor cell cycle progression and to protect tumor cells against apoptosis (23Dou Q.P. Li B. Drug Resistance Updates.. 1999; 2: 215-223Google Scholar). The chymotrypsin-like but not trypsin-like activity of the proteasome is associated with tumor cell survival (24An B. Goldfarb R.H. Siman R. Dou Q.P. Cell Death Differ... 1998; 5: 1062-1075Google Scholar, 25Lopes U.G. Erhardt P. Yao R. Cooper G.M. J. Biol. Chem... 1997; 272: 12893-12896Google Scholar). Many cell cycle and cell death regulators have been identified as targets of the ubiquitin-proteasome-mediated degradation pathway. These proteins include p53 (26Maki C.G. Huibregtse J.M. Howley P.M. Cancer Res... 1996; 56: 2649-2654Google Scholar), pRB (27Boyer S.N. Wazer D.E. Band V. Cancer Res... 1996; 56: 4620-4624Google Scholar), p21 (28Blagosklonny M.V. Wu G.S. Omura S. el-Deiry W.S. Biochem. Biophys. Res. Commun... 1996; 227: 564-569Google Scholar), p27Kip1 (29Pagano M. Tam S.W. Theodoras A.M. Beer-Romero P. Del Sal G. Chau V. Yew P.R. Draetta G.F. Rolfe M. Science.. 1995; 269: 682-685Google Scholar), IκB-α (30Verma I.M. Stevenson J.K. Schwarz E.M. Van Antwerp D. Miyamoto S. Genes Dev... 1995; 9: 2723-2735Google Scholar), and Bax (31Li B. Dou Q.P. Proc. Natl. Acad. Sci. U. S. A... 2000; 97: 3850-3855Google Scholar).Here, we report for the first time that ester bond-containing tea polyphenols potently and selectively inhibit the proteasomal chymotrypsin-like but not trypsin-like activity in vitro andin vivo. Among the tea polyphenols examined, EGCG showed the strongest inhibitory activity against purified 20S proteasome, 26S proteasome of tumor cell extracts, and 26S proteasome in intact tumor cells. Furthermore, the inhibition of the proteasome in vivowas able to accumulate the natural proteasome substrates p27Kip1 and IκB-α as well as induce the arrest of tumor cells in the G1 phase. Finally, normal human WI-38 fibroblasts were more resistant to the EGCG treatment than their SV40-transformed counterpart. Previous epidemiological studies have suggested that tea consumption may have a protective effect against human cancer (1Fujiki H. J. Cancer Res. Clin. Oncol... 1999; 125: 589-597Google Scholar, 2Kuroda Y. Hara Y. Mutat. Res... 1999; 436: 69-97Google Scholar, 3Yang C.S. Nutrition.. 1999; 15: 946-949Google Scholar, 4Ahmad N. Mukhtar H. Nutr. Rev... 1999; 57: 78-83Google Scholar). Recent animal studies have also demonstrated that green tea polyphenols could suppress the formation and growth of human cancers, including skin (5Katiyar S.K. Challa A. McCormick T.S. Cooper K.D. Mukhtar H. Carcinogenesis.. 1999; 20: 2117-2124Google Scholar, 6Wang Z.Y. Huang M.T. Ferraro T. Wong C.Q. Lou Y.R. Reuhl K. Iatropoulos M. Yang C.S. Conney A.H. Cancer Res... 1992; 52: 1162-1170Google Scholar), lung (7Xu Y. Ho C.T. Amin S.G. Han C. Chung F.L. Cancer Res... 1992; 52: 3875-3879Google Scholar), liver (8Nishida H. Omori M. Fukutomi Y. Ninomiya M. Nishiwaki S. Suganuma M. Moriwaki H. Muto Y. Jpn. J. Cancer Res... 1994; 85: 221-225Google Scholar), esophagus (9Wang Z.Y. Wang L.D. Lee M.J. Ho C.T. Huang M.T. Conney A.H. Yang C.S. Carcinogenesis.. 1995; 16: 2143-2148Google Scholar), and stomach (10Yamane T. Takahashi T. Kuwata K. Oya K. Inagake M. Kitao Y. Suganuma M. Fujiki H. Cancer Res... 1995; 55: 2081-2084Google Scholar). The major components of green and black tea include epigallocatechin-3-gallate (EGCG)1, epigallocatechin (EGC), epicatechin-3-gallate (ECG), epicatechin (EC), and their epimers (see Fig. 1 A). EGCG among those polyphenols has been most extensively examined because of its relative abundance and strong cancer-preventive properties (1Fujiki H. J. Cancer Res. Clin. Oncol... 1999; 125: 589-597Google Scholar, 11Balentine D.A. Wiseman S.A. Bouwens L.C. Crit. Rev. Food Sci. Nutr... 1997; 37: 693-704Google Scholar). EGCG has been shown to inhibit several cancer-related proteins, including urokinase (12Jankun J. Selman S.H. Swiercz R. Skrzypczak-Jankun E. Nature.. 1997; 387: 561Google Scholar), nitric-oxide synthase (13Lin Y.L. Lin J.K. Mol. Pharmacol... 1997; 52: 465-472Google Scholar), teromerase (14Naasani I. Seimiya H. Tsuruo T. Biochem. Biophys. Res. Commun... 1998; 249: 391-396Google Scholar), and tumor necrosis factor-α (15Okabe S. Ochiai Y. Aida M. Park K. Kim S.J. Nomura T. Suganuma M. Fujiki H. Jpn J. Cancer Res... 1999; 90: 733-739Google Scholar). However, nonphysiological concentrations of EGCG (i.e., concentrations higher than those found in human serum after tea consumption) were used in some earlier studies. Whether one or more of these proteins are the real molecular targets of EGCG and other tea polyphenols under physiological conditions needs further investigations. The 20S proteasome, a multicatalytic complex (700 kDa), constitutes the catalytic key component of the ubiquitous proteolytic machinery 26S proteasome (16Groll M. Ditzel L. Lowe J. Stock D. Bochtler M. Bartunik H.D. Huber R. Nature.. 1997; 386: 463-471Google Scholar, 17Maupin-Furlow J.A. Ferry J.G. J. Biol. Chem... 1995; 270: 28617-28622Google Scholar, 18Goldberg A.L. Science.. 1995; 268: 522-523Google Scholar, 19Baumeister W. Walz J. Zuhl F. Seemuller E. Cell.. 1998; 92: 367-380Google Scholar, 20Heinemeyer W. Fischer M. Krimmer T. Stachon U. Wolf D.H. J. Biol. Chem... 1997; 272: 25200-25209Google Scholar). There are three major proteasomal activities: chymotrypsin-like, trypsin-like, and peptidyl-glutamyl peptide hydrolyzing (PGPH) activities (16Groll M. Ditzel L. Lowe J. Stock D. Bochtler M. Bartunik H.D. Huber R. Nature.. 1997; 386: 463-471Google Scholar, 21Loidl G. Groll M. Musiol H.J. Huber R. Moroder L. Proc. Natl. Acad. Sci. U. S. A... 1999; 96: 5418-5422Google Scholar). The ubiquitin-proteasome system plays a critical role in the specific degradation of cellular proteins (22Hochstrasser M. Curr. Opin. Cell Biol... 1995; 7: 215-223Google Scholar), and two of the proteasome functions are to allow tumor cell cycle progression and to protect tumor cells against apoptosis (23Dou Q.P. Li B. Drug Resistance Updates.. 1999; 2: 215-223Google Scholar). The chymotrypsin-like but not trypsin-like activity of the proteasome is associated with tumor cell survival (24An B. Goldfarb R.H. Siman R. Dou Q.P. Cell Death Differ... 1998; 5: 1062-1075Google Scholar, 25Lopes U.G. Erhardt P. Yao R. Cooper G.M. J. Biol. Chem... 1997; 272: 12893-12896Google Scholar). Many cell cycle and cell death regulators have been identified as targets of the ubiquitin-proteasome-mediated degradation pathway. These proteins include p53 (26Maki C.G. Huibregtse J.M. Howley P.M. Cancer Res... 1996; 56: 2649-2654Google Scholar), pRB (27Boyer S.N. Wazer D.E. Band V. Cancer Res... 1996; 56: 4620-4624Google Scholar), p21 (28Blagosklonny M.V. Wu G.S. Omura S. el-Deiry W.S. Biochem. Biophys. Res. Commun... 1996; 227: 564-569Google Scholar), p27Kip1 (29Pagano M. Tam S.W. Theodoras A.M. Beer-Romero P. Del Sal G. Chau V. Yew P.R. Draetta G.F. Rolfe M. Science.. 1995; 269: 682-685Google Scholar), IκB-α (30Verma I.M. Stevenson J.K. Schwarz E.M. Van Antwerp D. Miyamoto S. Genes Dev... 1995; 9: 2723-2735Google Scholar), and Bax (31Li B. Dou Q.P. Proc. Natl. Acad. Sci. U. S. A... 2000; 97: 3850-3855Google Scholar). Here, we report for the first time that ester bond-containing tea polyphenols potently and selectively inhibit the proteasomal chymotrypsin-like but not trypsin-like activity in vitro andin vivo. Among the tea polyphenols examined, EGCG showed the strongest inhibitory activity against purified 20S proteasome, 26S proteasome of tumor cell extracts, and 26S proteasome in intact tumor cells. Furthermore, the inhibition of the proteasome in vivowas able to accumulate the natural proteasome substrates p27Kip1 and IκB-α as well as induce the arrest of tumor cells in the G1 phase. Finally, normal human WI-38 fibroblasts were more resistant to the EGCG treatment than their SV40-transformed counterpart. We thank Drs. A. B. Pardee and R. H. Goldfarb for critical reading of this manuscript, Drs. D. C. Eichler and L. P. Solomonson for permission to use the HPLC and for valuable discussion about HPLC data, Dr. R. Lush III for initial HPLC analysis, and the Lipton Co. for providing the tea extracts. (−)−epigallocatechin-3-gallate (−)−epigallocatechin (−)−epicatechin-3-gallate (−)−epicatechin (−)−gallocatechin-3-gallate (−)−gallocatechin (−)−catechin-3-gallate (−)−catechin 7-amido-4-methyl-coumarin peptidyl-glutamyl peptide-hydrolyzing high performance liquid chromatography inhibitor of transciption factor NF-κB 70 kDa 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid benzyloxycarbonyl
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wxz完成签到,获得积分10
1秒前
70完成签到,获得积分10
1秒前
火翟丰丰山心完成签到 ,获得积分10
6秒前
王肥肥发布了新的文献求助50
7秒前
WPYZJ应助flysky120采纳,获得30
7秒前
七月完成签到,获得积分10
8秒前
dudu10000完成签到,获得积分10
8秒前
9秒前
9秒前
哈哈发布了新的文献求助10
11秒前
小不发布了新的文献求助10
12秒前
13秒前
13秒前
领导范儿应助易楠采纳,获得10
13秒前
ZJR发布了新的文献求助10
14秒前
眼睛大善斓完成签到,获得积分10
14秒前
17秒前
SYY完成签到,获得积分10
19秒前
bias完成签到,获得积分10
19秒前
周周发布了新的文献求助10
20秒前
22秒前
义气发布了新的文献求助10
24秒前
pitto完成签到,获得积分10
25秒前
想酷发布了新的文献求助30
26秒前
Jonas发布了新的文献求助10
26秒前
善学以致用应助科研靓仔采纳,获得10
28秒前
沉默迎蕾发布了新的文献求助10
29秒前
lyfrey完成签到,获得积分10
29秒前
29秒前
赘婿应助闪电采纳,获得10
29秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
31秒前
在水一方应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
小马甲应助朴实凡柔采纳,获得10
32秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171185
求助须知:如何正确求助?哪些是违规求助? 2822095
关于积分的说明 7938128
捐赠科研通 2482611
什么是DOI,文献DOI怎么找? 1322672
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627