期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers] 日期:2015-03-01卷期号:6 (2): 980-987被引量:253
标识
DOI:10.1109/tsg.2014.2386305
摘要
Gearbox has proven to be a major contributor toward downtime in wind turbines. The majority of failures in the gearbox originate from the gearbox bearings. An early indication of possible wear and tear in the gearbox bearings may be used for effective predictive maintenance, thereby reducing the overall cost of maintenance. This paper introduces a self-evolving maintenance scheduler framework for maintenance management of wind turbines. Furthermore, an artificial neural network (ANN)-based condition monitoring approach using data from supervisory control and data acquisition system is proposed. The ANN-based condition monitoring approach is applied to gearbox bearings with real data from onshore wind turbines, rated 2 MW, and located in the south of Sweden. The results demonstrate that the proposed ANN-based condition monitoring approach is capable of indicating severe damage in the components being monitored in advance.