Effect of Mechanical Grinding on the Lithium Intercalation Process in Graphites and Soft Carbons

插层(化学) 研磨 锂(药物) 材料科学 石墨 软化学 过程(计算) 化学工程 复合材料 冶金 化学 无机化学 纳米技术 计算机科学 工程类 内分泌学 操作系统 医学
作者
F. Disma,Luc Aymard,Lieven Dupont,Jean-Marie Tarascon
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:143 (12): 3959-3972 被引量:161
标识
DOI:10.1149/1.1837322
摘要

The effects of mechanical grinding on morphology and electrochemical performance of graphite and soft carbon powders with respect to lithium insertion were studied. The morphology of the milled graphitic powders was found to depend strongly upon the nature of the interactions (e.g., impact or shear) generated by the two kinds of mixer mills used. For the same milling time, crystallite size was smallest and the density of defects highest for graphitic powders that were ball-milled using impact interactions. The specific surface area of the milled samples does not increase indefinitely with increased milling time, but there is a critical milling time (m{sub c}) beyond which the specific surface area goes through a maximum (graphite) or levels off for cokes. By controlling milling conditions, graphite and soft carbon powders with well-defined morphology, d-spacings, surface area, and crystallite size can be made. The reversible (reversible amount of inserted Li) vs. irreversible capacity (irreversible lithium loss between the first discharge and charge) was measured for various C/Li cells using various tailor-made graphite and soft carbon powders. A direct correlation between the irreversible capacity of the milled samples and their specific surface area was observed, consistent with catalytically induced reduction of the electrolyte. Formore » milling times greater than m{sub c}, the irreversible capacity remains constant or even decreases while the reversible capacity still increases. With mechanical grinding, both graphite and coke samples having irreversible capacity of 328 mAh/g for a reversible capacity of 708 mAh/g ({approximately}Li{sub 2}C{sub 6}) were obtained.« less

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王发布了新的文献求助10
刚刚
初吻还在完成签到,获得积分10
1秒前
MADKAI发布了新的文献求助10
1秒前
Asss完成签到,获得积分10
1秒前
1秒前
时光友岸完成签到,获得积分10
2秒前
3秒前
昭昭完成签到,获得积分10
3秒前
niu1完成签到,获得积分10
4秒前
铃兰完成签到,获得积分10
4秒前
尘尘完成签到,获得积分10
4秒前
5秒前
yan完成签到,获得积分20
5秒前
5秒前
小鹿斑比完成签到 ,获得积分10
6秒前
洛洛完成签到 ,获得积分10
6秒前
浮华乱世完成签到 ,获得积分10
6秒前
otaro完成签到,获得积分10
6秒前
万能图书馆应助zsqqqqq采纳,获得10
6秒前
领导范儿应助zhonghbush采纳,获得10
7秒前
reck发布了新的文献求助10
7秒前
舒服的鱼完成签到 ,获得积分10
7秒前
7秒前
WLL完成签到,获得积分10
7秒前
7秒前
罗mian发布了新的文献求助10
7秒前
轻松的雨旋完成签到,获得积分10
8秒前
星辰大海应助小宇采纳,获得10
8秒前
啦啦啦发布了新的文献求助10
9秒前
zxk完成签到,获得积分10
9秒前
9秒前
10秒前
xjx完成签到 ,获得积分10
10秒前
酷炫大树发布了新的文献求助10
11秒前
orixero应助凶狠的盼柳采纳,获得10
11秒前
阿翼完成签到 ,获得积分10
11秒前
妮露的修狗完成签到,获得积分10
11秒前
乐园完成签到,获得积分10
11秒前
开朗满天完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672