Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs

计算机科学 偏爱 背景(考古学) 推论 空间语境意识 情报检索 数据挖掘 机器学习 人工智能 地理 经济 考古 微观经济学
作者
Dingqi Yang,Daqing Zhang,Vincent W. Zheng,Zhiyong Yu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 129-142 被引量:481
标识
DOI:10.1109/tsmc.2014.2327053
摘要

With the recent surge of location based social networks (LBSNs), activity data of millions of users has become attainable. This data contains not only spatial and temporal stamps of user activity, but also its semantic information. LBSNs can help to understand mobile users' spatial temporal activity preference (STAP), which can enable a wide range of ubiquitous applications, such as personalized context-aware location recommendation and group-oriented advertisement. However, modeling such user-specific STAP needs to tackle high-dimensional data, i.e., user-location-time-activity quadruples, which is complicated and usually suffers from a data sparsity problem. In order to address this problem, we propose a STAP model. It first models the spatial and temporal activity preference separately, and then uses a principle way to combine them for preference inference. In order to characterize the impact of spatial features on user activity preference, we propose the notion of personal functional region and related parameters to model and infer user spatial activity preference. In order to model the user temporal activity preference with sparse user activity data in LBSNs, we propose to exploit the temporal activity similarity among different users and apply nonnegative tensor factorization to collaboratively infer temporal activity preference. Finally, we put forward a context-aware fusion framework to combine the spatial and temporal activity preference models for preference inference. We evaluate our proposed approach on three real-world datasets collected from New York and Tokyo, and show that our STAP model consistently outperforms the baseline approaches in various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr发布了新的文献求助10
刚刚
刚刚
凉面完成签到 ,获得积分10
刚刚
多亿点发布了新的文献求助10
1秒前
1秒前
魔幻熊猫给魔幻熊猫的求助进行了留言
1秒前
zmayq完成签到,获得积分10
1秒前
2秒前
solapaul发布了新的文献求助20
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
liukuangxu发布了新的文献求助10
2秒前
所所应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
飘逸问薇完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
3秒前
深情安青应助坚强的严青采纳,获得10
4秒前
4秒前
情怀应助小菜采纳,获得10
5秒前
逸晨发布了新的文献求助10
5秒前
xjcy应助Dr采纳,获得10
5秒前
xjcy应助Dr采纳,获得10
5秒前
窦誉应助WangY1263采纳,获得20
5秒前
CipherSage应助Dr采纳,获得10
5秒前
5秒前
科研通AI2S应助yu采纳,获得10
6秒前
Zxx发布了新的文献求助10
6秒前
7秒前
巴哒完成签到,获得积分10
7秒前
8秒前
8秒前
chengs完成签到,获得积分10
8秒前
MRM完成签到 ,获得积分10
8秒前
魔幻的访云完成签到,获得积分20
9秒前
布丁完成签到,获得积分20
9秒前
9秒前
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143342
求助须知:如何正确求助?哪些是违规求助? 2794538
关于积分的说明 7811563
捐赠科研通 2450725
什么是DOI,文献DOI怎么找? 1304041
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386