Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs

计算机科学 偏爱 背景(考古学) 推论 空间语境意识 情报检索 数据挖掘 机器学习 人工智能 地理 经济 考古 微观经济学
作者
Dingqi Yang,Daqing Zhang,Vincent W. Zheng,Zhiyong Yu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:45 (1): 129-142 被引量:481
标识
DOI:10.1109/tsmc.2014.2327053
摘要

With the recent surge of location based social networks (LBSNs), activity data of millions of users has become attainable. This data contains not only spatial and temporal stamps of user activity, but also its semantic information. LBSNs can help to understand mobile users' spatial temporal activity preference (STAP), which can enable a wide range of ubiquitous applications, such as personalized context-aware location recommendation and group-oriented advertisement. However, modeling such user-specific STAP needs to tackle high-dimensional data, i.e., user-location-time-activity quadruples, which is complicated and usually suffers from a data sparsity problem. In order to address this problem, we propose a STAP model. It first models the spatial and temporal activity preference separately, and then uses a principle way to combine them for preference inference. In order to characterize the impact of spatial features on user activity preference, we propose the notion of personal functional region and related parameters to model and infer user spatial activity preference. In order to model the user temporal activity preference with sparse user activity data in LBSNs, we propose to exploit the temporal activity similarity among different users and apply nonnegative tensor factorization to collaboratively infer temporal activity preference. Finally, we put forward a context-aware fusion framework to combine the spatial and temporal activity preference models for preference inference. We evaluate our proposed approach on three real-world datasets collected from New York and Tokyo, and show that our STAP model consistently outperforms the baseline approaches in various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuynnn发布了新的文献求助30
刚刚
刚刚
小妮发布了新的文献求助10
刚刚
善学以致用应助Magical采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
trial发布了新的文献求助10
2秒前
coolkid应助小学虫采纳,获得20
2秒前
3秒前
fixing发布了新的文献求助10
3秒前
yyy关闭了yyy文献求助
5秒前
5秒前
在水一方应助JingY采纳,获得10
6秒前
内向怀曼发布了新的文献求助10
6秒前
flance完成签到 ,获得积分10
6秒前
liuynnn完成签到,获得积分20
7秒前
瘦瘦妖妖发布了新的文献求助10
7秒前
华仔应助贺兰采纳,获得10
8秒前
香蕉觅云应助99668采纳,获得10
9秒前
兜哥完成签到,获得积分10
11秒前
慕凝完成签到,获得积分20
12秒前
bkagyin应助oyx53采纳,获得10
14秒前
14秒前
Leif完成签到,获得积分0
15秒前
xx完成签到,获得积分20
15秒前
15秒前
闪闪落雁完成签到,获得积分10
16秒前
Singularity应助Juli采纳,获得10
16秒前
Orange应助fixing采纳,获得10
18秒前
mouxq发布了新的文献求助10
18秒前
王丝语完成签到,获得积分10
18秒前
19秒前
19秒前
我ppp发布了新的文献求助10
20秒前
21秒前
22秒前
刘丽梅完成签到 ,获得积分10
23秒前
23秒前
韶华发布了新的文献求助10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019