Automated Pipeline for De Novo Metabolite Identification Using Mass-Spectrometry-Based Metabolomics

代谢组学 代谢物 化学 计算生物学 管道(软件) 鉴定(生物学) 碎片(计算) 质谱法 数据挖掘 生物系统 色谱法 计算机科学 生物化学 生物 操作系统 植物 程序设计语言
作者
Julio E. Peironcely,Miguel Rojas‐Chertó,Albert C. Tas,Rob J. Vreeken,Theo Reijmers,L Coulier,Thomas Hankemeier
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:85 (7): 3576-3583 被引量:49
标识
DOI:10.1021/ac303218u
摘要

Metabolite identification is one of the biggest bottlenecks in metabolomics. Identifying human metabolites poses experimental, analytical, and computational challenges. Here we present a pipeline of previously developed cheminformatic tools and demonstrate how it facilitates metabolite identification using solely LC/MS(n) data. These tools process, annotate, and compare MS(n) data, and propose candidate structures for unknown metabolites either by identity assignment of identical mass spectral trees or by de novo identification using substructures of similar trees. The working and performance of this metabolite identification pipeline is demonstrated by applying it to LC/MS(n) data of urine samples. From human urine, 30 MS(n) trees of unknown metabolites were acquired, processed, and compared to a reference database containing MS(n) data of known metabolites. From these 30 unknowns, we could assign a putative identity for 10 unknowns by finding identical fragmentation trees. For 11 unknowns no similar fragmentation trees were found in the reference database. On the basis of elemental composition only, a large number of candidate structures/identities were possible, so these unknowns remained unidentified. The other 9 unknowns were also not found in the database, but metabolites with similar fragmentation trees were retrieved. Computer assisted structure elucidation was performed for these 9 unknowns: for 4 of them we could perform de novo identification and propose a limited number of candidate structures, and for the other 5 the structure generation process could not be constrained far enough to yield a small list of candidates. The novelty of this work is that it allows de novo identification of metabolites that are not present in a database by using MS(n) data and computational tools. We expect this pipeline to be the basis for the computer-assisted identification of new metabolites in future metabolomics studies, and foresee that further additions will allow the identification of even a larger fraction of the unknown metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助娜娜子欧采纳,获得10
1秒前
kl完成签到,获得积分10
1秒前
HHYYAA发布了新的文献求助10
1秒前
hachii完成签到,获得积分10
1秒前
醉熏的秋翠完成签到,获得积分20
2秒前
雨安完成签到,获得积分10
2秒前
2秒前
韦觅松完成签到,获得积分10
3秒前
3秒前
小茜完成签到,获得积分10
4秒前
赎罪发布了新的文献求助10
4秒前
NNsun完成签到 ,获得积分10
4秒前
小陈完成签到,获得积分10
4秒前
5秒前
joji完成签到,获得积分10
5秒前
一棵草完成签到,获得积分10
5秒前
123zq完成签到 ,获得积分10
5秒前
Glamour_Joy发布了新的文献求助10
5秒前
Ganlou应助解不言采纳,获得10
5秒前
6秒前
shaoshao完成签到,获得积分10
6秒前
sallltyyy完成签到,获得积分10
6秒前
lu完成签到,获得积分20
7秒前
亚里土缺德完成签到,获得积分10
7秒前
7秒前
LSD完成签到,获得积分20
7秒前
可可完成签到 ,获得积分10
8秒前
个性的雪旋完成签到 ,获得积分10
8秒前
z1y1p1完成签到,获得积分10
8秒前
坚强的傲白完成签到,获得积分10
9秒前
早日出成果完成签到,获得积分10
9秒前
yar应助张有志采纳,获得10
10秒前
11秒前
12秒前
12秒前
彳亍完成签到 ,获得积分10
13秒前
巧可脆脆完成签到,获得积分10
13秒前
小王发布了新的文献求助10
13秒前
chenghua发布了新的文献求助10
13秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262101
求助须知:如何正确求助?哪些是违规求助? 2902863
关于积分的说明 8322892
捐赠科研通 2572852
什么是DOI,文献DOI怎么找? 1397880
科研通“疑难数据库(出版商)”最低求助积分说明 653941
邀请新用户注册赠送积分活动 632506