Automated Pipeline for De Novo Metabolite Identification Using Mass-Spectrometry-Based Metabolomics

代谢组学 代谢物 化学 计算生物学 管道(软件) 鉴定(生物学) 碎片(计算) 质谱法 数据挖掘 生物系统 色谱法 计算机科学 生物化学 生物 植物 程序设计语言 操作系统
作者
Julio E. Peironcely,Miguel Rojas‐Chertó,Albert C. Tas,Rob J. Vreeken,Theo Reijmers,L Coulier,Thomas Hankemeier
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:85 (7): 3576-3583 被引量:49
标识
DOI:10.1021/ac303218u
摘要

Metabolite identification is one of the biggest bottlenecks in metabolomics. Identifying human metabolites poses experimental, analytical, and computational challenges. Here we present a pipeline of previously developed cheminformatic tools and demonstrate how it facilitates metabolite identification using solely LC/MS(n) data. These tools process, annotate, and compare MS(n) data, and propose candidate structures for unknown metabolites either by identity assignment of identical mass spectral trees or by de novo identification using substructures of similar trees. The working and performance of this metabolite identification pipeline is demonstrated by applying it to LC/MS(n) data of urine samples. From human urine, 30 MS(n) trees of unknown metabolites were acquired, processed, and compared to a reference database containing MS(n) data of known metabolites. From these 30 unknowns, we could assign a putative identity for 10 unknowns by finding identical fragmentation trees. For 11 unknowns no similar fragmentation trees were found in the reference database. On the basis of elemental composition only, a large number of candidate structures/identities were possible, so these unknowns remained unidentified. The other 9 unknowns were also not found in the database, but metabolites with similar fragmentation trees were retrieved. Computer assisted structure elucidation was performed for these 9 unknowns: for 4 of them we could perform de novo identification and propose a limited number of candidate structures, and for the other 5 the structure generation process could not be constrained far enough to yield a small list of candidates. The novelty of this work is that it allows de novo identification of metabolites that are not present in a database by using MS(n) data and computational tools. We expect this pipeline to be the basis for the computer-assisted identification of new metabolites in future metabolomics studies, and foresee that further additions will allow the identification of even a larger fraction of the unknown metabolites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arvin发布了新的文献求助10
刚刚
bkagyin应助洁净的涵山采纳,获得10
刚刚
1秒前
化工牛马发布了新的文献求助10
2秒前
愉快的乐双完成签到 ,获得积分10
2秒前
派小星完成签到,获得积分10
2秒前
秋天的童话完成签到,获得积分10
2秒前
KEYANXIAOBAI发布了新的文献求助10
3秒前
zik应助苏silence采纳,获得10
3秒前
啊啊啊啊完成签到,获得积分20
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ZZY完成签到,获得积分10
4秒前
1604531786发布了新的文献求助10
4秒前
英俊的铭应助夕荀采纳,获得10
4秒前
5秒前
旦旦旦旦旦旦完成签到,获得积分10
5秒前
BiuBiu怪完成签到,获得积分10
5秒前
5秒前
柠檬西米露完成签到,获得积分10
6秒前
潇湘学术完成签到,获得积分10
6秒前
6秒前
兆吉完成签到 ,获得积分10
6秒前
TiY发布了新的文献求助10
6秒前
6秒前
不安枕头完成签到 ,获得积分10
6秒前
丘比特应助liu1900ab采纳,获得10
6秒前
7秒前
7秒前
ZZY发布了新的文献求助10
7秒前
Evelyn完成签到,获得积分0
7秒前
8秒前
科研小白完成签到,获得积分10
8秒前
善学以致用应助铃铃铛采纳,获得10
8秒前
小Z发布了新的文献求助10
9秒前
WYT发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006