自愈水凝胶
自愈
材料科学
韧性
聚丙烯酰胺
共价键
网络结构
复合材料
纳米技术
计算机科学
化学
医学
高分子化学
替代医学
有机化学
病理
机器学习
作者
Qiang Chen,Lin Zhu,Hong Chen,Hongli Yan,Lina Huang,Jia Yang,Jie Zheng
标识
DOI:10.1002/adfm.201404357
摘要
Double network (DN) hydrogels with two strong asymmetric networks being chemically linked have demonstrated their excellent mechanical properties as the toughest hydrogels, but chemically linked DN gels often exhibit negligible fatigue resistance and poor self‐healing property due to the irreversible chain breaks in covalent‐linked networks. Here, a new design strategy is proposed and demonstrated to improve both fatigue resistance and self‐healing property of DN gels by introducing a ductile, nonsoft gel with strong hydrophobic interactions as the second network. Based on this design strategy, a new type of fully physically cross‐linked Agar/hydrophobically associated polyacrylamide (HPAAm) DN gels are synthesized by a simple one‐pot method. Agar/HPAAm DN gels exhibit excellent mechanical strength and high toughness, comparable to the reported DN gels. More importantly, because the ductile and tough second network of HPAAm can bear stress and reconstruct network structure, Agar/HPAAm DN gels also demonstrate rapid self‐recovery, remarkable fatigue resistance, and notable self‐healing property without any external stimuli at room temperature. In contrast to the former DN gels in both network structures and underlying association forces, this new design strategy to prepare highly mechanical DN gels provides a new avenue to better understand the fundamental structure‐property relationship of DN hydrogels, thus broadening current hydrogel research and applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI