Genomic prediction in CIMMYT maize and wheat breeding programs

基因组选择 生物 遗传力 预测建模 特质 选择(遗传算法) 植物育种 人口 育种计划 生物技术 数量性状位点 遗传增益 农学 统计 基因型 遗传学 机器学习 遗传变异 计算机科学 数学 栽培 人口学 基因 单核苷酸多态性 社会学 程序设计语言
作者
José Crossa,Paulino Pérez‐Rodríguez,John M. Hickey,Juan Burgueño,Leonardo Ornella,J. Jesús Cerón‐Rojas,Xuecai Zhang,Susanne Dreisigacker,Raman Babu,Yongle Li,David Bonnett,Ky L. Mathews
出处
期刊:Heredity [Springer Nature]
卷期号:112 (1): 48-60 被引量:392
标识
DOI:10.1038/hdy.2013.16
摘要

Genomic selection (GS) has been implemented in animal and plant species, and is regarded as a useful tool for accelerating genetic gains. Varying levels of genomic prediction accuracy have been obtained in plants, depending on the prediction problem assessed and on several other factors, such as trait heritability, the relationship between the individuals to be predicted and those used to train the models for prediction, number of markers, sample size and genotype × environment interaction (GE). The main objective of this article is to describe the results of genomic prediction in International Maize and Wheat Improvement Center's (CIMMYT's) maize and wheat breeding programs, from the initial assessment of the predictive ability of different models using pedigree and marker information to the present, when methods for implementing GS in practical global maize and wheat breeding programs are being studied and investigated. Results show that pedigree (population structure) accounts for a sizeable proportion of the prediction accuracy when a global population is the prediction problem to be assessed. However, when the prediction uses unrelated populations to train the prediction equations, prediction accuracy becomes negligible. When genomic prediction includes modeling GE, an increase in prediction accuracy can be achieved by borrowing information from correlated environments. Several questions on how to incorporate GS into CIMMYT's maize and wheat programs remain unanswered and subject to further investigation, for example, prediction within and between related bi-parental crosses. Further research on the quantification of breeding value components for GS in plant breeding populations is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助优秀的枕头采纳,获得10
刚刚
温酒随行发布了新的文献求助10
刚刚
淡淡宛完成签到 ,获得积分0
1秒前
1秒前
1秒前
1秒前
Sink发布了新的文献求助10
2秒前
lili发布了新的文献求助20
4秒前
香蕉觅云应助小巧谷波采纳,获得10
4秒前
林昀发布了新的文献求助10
4秒前
爆米花应助柳大宝采纳,获得10
5秒前
善学以致用应助科研小白采纳,获得10
5秒前
6秒前
ss发布了新的文献求助10
7秒前
杨家辉发布了新的文献求助10
8秒前
8秒前
peanut发布了新的文献求助100
9秒前
沉静的怜蕾完成签到,获得积分10
9秒前
辛勤泥猴桃完成签到,获得积分10
10秒前
孟韩发布了新的文献求助10
11秒前
乐乐应助111采纳,获得10
11秒前
12秒前
ff完成签到,获得积分10
12秒前
Ava应助吉驴采纳,获得30
13秒前
14秒前
王兆烨完成签到,获得积分10
14秒前
14秒前
ww完成签到,获得积分10
15秒前
16秒前
沉默羔羊发布了新的文献求助10
18秒前
Ava应助ss采纳,获得10
18秒前
ww发布了新的文献求助10
18秒前
羊羊羊完成签到,获得积分10
20秒前
20秒前
21秒前
哆啦B梦发布了新的文献求助10
21秒前
小羊咩咩发布了新的文献求助10
21秒前
Lucas应助了该采纳,获得10
23秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143