化学
二氢络合物
配体(生物化学)
质子化
氢化物
脱氢
药物化学
甲醇
同位素
结晶学
立体化学
光化学
分子
氢
有机化学
催化作用
离子
生物化学
受体
作者
Leslie D. Field,Hsiu L. Li,Barbara A. Messerle,Ronald J. Smernik,Peter Turner
出处
期刊:Dalton Transactions
[The Royal Society of Chemistry]
日期:2004-01-01
卷期号: (9): 1418-1418
被引量:12
摘要
The dihydrogen hydrido complex [FeH(H2)(PP3)]+ 1 (PP3 = P(CH2CH2PMe2)3 2) was formed by the protonation of the dihydrido complex FeH2(PP3) 3 with methanol or ethanol. The observation of H-D coupling in partially deuterated isotopomers of 1 and measurement of T1 relaxation times for the hydrido and dihydrogen resonances of 1 confirmed the presence of the eta2-dihydrogen ligand. Complex 1 shows dynamic NMR behaviour in both the 31P and 1H NMR spectra with facile exchange between the protons in the eta2-dihydrogen ligand and the eta1-hydrido ligand. The dihydrogen ligand of 1 is easily displaced by both anionic and neutral ligands to afford the corresponding hydrido complexes [FeHX(PP3)]+ (X = CO 11, X = PPh3 12) or FeHX(PP3)(X = Cl 13, X = Br 14, X = I 15, X = N3 16). Small quantities of the alkoxy hydrido complexes FeH(OR)(PP3)(R = Me 4; R = Et 5) are observed in methanol and ethanol solutions containing 1. In methanol solution, FeH(OMe)(PP3) 4 reacts to form the carbonyl hydrido complex [FeH(CO)(PP3)]+ 11 and isotopic labelling confirms that the carbonyl ligand of 11 is derived from the methanol solvent. The mechanism of methanol oxidation presumably proceeds through beta-hydride elimination from FeH(OMe)(PP3) to produce formaldehyde as an intermediate which is further dehydrogenated to form the carbonyl ligand. [FeH(H2)(PP3)]+ 1 and FeHCl(PP3) 13 react rapidly with paraformaldehyde to also form [FeH(CO)(PP3)]+ 11. Complex 11 also decarbonylates acetaldehyde to afford the methyl carbonyl complex [FeMe(CO)(PP3)]+ 17. The structure of 17 was confirmed by X-ray crystallography.
科研通智能强力驱动
Strongly Powered by AbleSci AI