磁共振成像
体内
川地68
正电子发射断层摄影术
医学
离体
病理
病变
流式细胞术
巨噬细胞
免疫染色
分子成像
生物医学工程
核医学
体外
化学
放射科
免疫学
免疫组织化学
生物化学
生物
生物技术
作者
Matthias Nahrendorf,Hanwen Zhang,Sheena Hembrador,Peter Panizzi,David E. Sosnovik,Elena Aikawa,Peter Libby,Filip K. Swirski,Ralph Weissleder
出处
期刊:Circulation
[Ovid Technologies (Wolters Kluwer)]
日期:2008-01-22
卷期号:117 (3): 379-387
被引量:493
标识
DOI:10.1161/circulationaha.107.741181
摘要
Background— Macrophages participate centrally in atherosclerosis, and macrophage markers (eg, CD68, MAC-3) correlate well with lesion severity and therapeutic modulation. On the basis of the avidity of lesional macrophages for polysaccharide-containing supramolecular structures such as nanoparticles, we have developed a new positron emission tomography (PET) agent with optimized pharmacokinetics to allow in vivo imaging at tracer concentrations. Methods and Results— A dextranated and DTPA-modified magnetofluorescent 20-nm nanoparticle was labeled with the PET tracer 64 Cu (1 mCi/0.1 mg nanoparticles) to yield a PET, magnetic resonance, and optically detectable imaging agent. Peak PET activity 24 hours after intravenous injection into mice deficient in apolipoprotein E with experimental atherosclerosis mapped to areas of high plaque load identified by computed tomography such as the aortic root and arch and correlated with magnetic resonance and optical imaging. Accumulated dose in apolipoprotein E–deficient aortas determined by gamma counting was 260% and in carotids 392% of respective wild-type organs ( P <0.05 both). Autoradiography of aortas demonstrated uptake of the agent into macrophage-rich atheromata identified by Oil Red O staining of lipid deposits. The novel nanoagent accumulated predominantly in macrophages as determined by fluorescence microscopy and flow cytometry of cells dissociated from aortas. Conclusions— This report establishes the capability of a novel trimodality nanoparticle to directly detect macrophages in atherosclerotic plaques. Advantages include improved sensitivity; direct correlation of PET signal with an established biomarker (CD68); ability to readily quantify the PET signal, perform whole-body vascular surveys, and spatially localize and follow the trireporter by microscopy; and clinical translatability of the agent given similarities to magnetic resonance imaging probes in clinical trials.
科研通智能强力驱动
Strongly Powered by AbleSci AI