膨润土
电解质
离子电导率
电导率
材料科学
电化学
化学
化学工程
电极
工程类
物理化学
作者
Shangbin Sang,Jifu Zhang,Qiumei Wu,Yugeng Liao
标识
DOI:10.1016/j.electacta.2007.06.004
摘要
The influence of the dopant Bentonite, on the ionic conductivity of the PVA-KOH-H2O alkaline solid polymer electrolyte (ASPE) is studied. The results show that the addition of Bentonite has both positive and negative effects on the ionic conductivity of ASPE. At lower KOH and H2O contents, the addition of Bentonite can break the continuous ion conducting phase of the ASPE, and therefore decrease the ASPE conductivity. However, the addition of Bentonite can also increase the KOH content in PVA matrix. This greatly increases the conductivity of the ASPE especially at higher water content. A highest ionic conductivity of 0.11 S cm−1 is reached at room temperature. A maximum ionic conductivity value is observed at relative lower water content for different amount of Bentonite-doped ASPE. The temperature dependence of the ionic conductivity is of the Arrhenius type. The ion transfer activation energy Ea, in the order of 4–6 kJ mol−1, heavily depends on the Bentonite content. XRD and SEM tests show that PVA in the Bentonite-doped ASPE is of amorphous structure, and there are lots of interspaces in the composite ASPE inner structure. The composite electrolyte has good electrochemical stability window and good charged–discharge property in secondary Zn–Ni cells at low charge–discharge rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI