Random search for hyper-parameter optimization

超参数优化 随机搜索 计算机科学 网格 集合(抽象数据类型) 人工神经网络 分数(化学) 搜索算法 数据挖掘 人工智能 机器学习 算法 数学 几何学 支持向量机 有机化学 化学 程序设计语言
作者
James Bergstra,Yoshua Bengio
出处
期刊:Journal of Machine Learning Research [The MIT Press]
卷期号:13 (1): 281-305 被引量:1268
链接
摘要

Grid search and manual search are the most widely used strategies for hyper-parameter optimization. This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid. Empirical evidence comes from a comparison with a large previous study that used grid search and manual search to configure neural networks and deep belief networks. Compared with neural networks configured by a pure grid search, we find that random search over the same domain is able to find models that are as good or better within a small fraction of the computation time. Granting random search the same computational budget, random search finds better models by effectively searching a larger, less promising configuration space. Compared with deep belief networks configured by a thoughtful combination of manual search and grid search, purely random search over the same 32-dimensional configuration space found statistically equal performance on four of seven data sets, and superior performance on one of seven. A Gaussian process analysis of the function from hyper-parameters to validation set performance reveals that for most data sets only a few of the hyper-parameters really matter, but that different hyper-parameters are important on different data sets. This phenomenon makes grid search a poor choice for configuring algorithms for new data sets. Our analysis casts some light on why recent High Throughput methods achieve surprising success--they appear to search through a large number of hyper-parameters because most hyper-parameters do not matter much. We anticipate that growing interest in large hierarchical models will place an increasing burden on techniques for hyper-parameter optimization; this work shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper-parameter optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kinji完成签到,获得积分10
刚刚
昕昕233完成签到,获得积分10
1秒前
22发布了新的文献求助10
1秒前
1秒前
1秒前
传奇3应助nzxnzx采纳,获得10
1秒前
1秒前
bkagyin应助顺利紫山采纳,获得10
2秒前
殷权威发布了新的文献求助10
2秒前
doctorbin完成签到 ,获得积分10
2秒前
遊星完成签到,获得积分10
2秒前
wyx发布了新的文献求助10
2秒前
6秒前
6秒前
wyf完成签到,获得积分20
6秒前
6秒前
汉堡包应助萤火虫采纳,获得10
7秒前
黯然发布了新的文献求助10
7秒前
充电宝应助Shinewei采纳,获得10
8秒前
8秒前
圆锥香蕉应助贵贵采纳,获得20
8秒前
8秒前
9秒前
殷权威完成签到,获得积分10
9秒前
9秒前
风出袖发布了新的文献求助30
10秒前
huangr123发布了新的文献求助10
10秒前
爱因斯宣发布了新的文献求助10
10秒前
只如初发布了新的文献求助10
11秒前
kirirto完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
黄紫红蓝发布了新的文献求助10
13秒前
14秒前
14秒前
anna1992发布了新的文献求助10
15秒前
15秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650