Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

化学 偏最小二乘回归 分析化学(期刊) 光谱学 化学计量学 食品科学
作者
Lin Huang,Jiewen Zhao,Quansheng Chen,Yanhua Zhang
出处
期刊:Food Chemistry [Elsevier]
卷期号:145: 228-236 被引量:174
标识
DOI:10.1016/j.foodchem.2013.06.073
摘要

Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助嗯qq采纳,获得10
刚刚
Viva完成签到,获得积分10
刚刚
2秒前
感动水杯发布了新的文献求助10
4秒前
5秒前
热情的凝云完成签到,获得积分20
5秒前
Clove完成签到 ,获得积分10
5秒前
HS发布了新的文献求助10
6秒前
大个应助刘坦苇采纳,获得10
7秒前
早早完成签到,获得积分20
7秒前
8秒前
8秒前
9秒前
Huobol完成签到,获得积分10
10秒前
10秒前
折耳Doc完成签到,获得积分10
11秒前
12秒前
调研昵称发布了新的文献求助10
12秒前
嗯qq发布了新的文献求助10
12秒前
汉堡包应助刘坦苇采纳,获得10
13秒前
周星星发布了新的文献求助10
14秒前
123发布了新的文献求助10
14秒前
一一应助橘络采纳,获得10
15秒前
15秒前
16秒前
万能图书馆应助nanfeng采纳,获得10
16秒前
我要住giao楼完成签到 ,获得积分10
16秒前
薛凡发布了新的文献求助10
16秒前
路过的骑士完成签到 ,获得积分10
18秒前
山橘月发布了新的文献求助10
18秒前
18秒前
刘坦苇发布了新的文献求助10
19秒前
19秒前
传奇3应助李小麻采纳,获得10
20秒前
Singularity应助wyxdd采纳,获得10
20秒前
小喻发布了新的文献求助10
21秒前
21秒前
桐桐应助王立伟采纳,获得10
22秒前
AAAAA完成签到 ,获得积分10
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664