非参数统计
参数统计
原始数据
统计
人口
数据分析
统计假设检验
正态性
参数化模型
功率变换
转化(遗传学)
计算机科学
数学
计量经济学
人工智能
化学
生物化学
基因
社会学
人口学
一致性(知识库)
作者
Jeffrey Lee Rasmussen,William P. Dunlap
标识
DOI:10.1177/001316449105100402
摘要
Researchers have typically employed parametric analysis of raw data to test experimental data for statistical significance. When the data are not normally distributed, data transformation or nonparametric analysis are often recommended. The present study compares parametric analysis of raw data to parametric analysis of transformed data and to nonparametric analysis when the tests are carried out under population nonnormality. The results of a Monte Carlo simulation indicate that when distributions depart markedly from normality, nonparametric analysis and parametric analysis of transformed data show superior power to parametric analysis of raw data. Furthermore, under the conditions studied, parametric analysis of transformed data appears to be somewhat more powerful than nonparametric analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI