化学
果胶
圆二色性
二价
膜
离子
螯合作用
结晶学
扩散
水溶液中的金属离子
选择性
金属
分析化学(期刊)
无机化学
色谱法
有机化学
生物化学
热力学
物理
催化作用
作者
David Thom,Gregor T. Grant,Edwin R. Morris,David A. Rees
标识
DOI:10.1016/s0008-6215(00)81023-x
摘要
The cation-induced gelation of alginates and pectins with various metal ions has been monitored by circular dichroism (c.d.), using a controlled diffusion technique to prepare homogeneous gels in situ. Spectral changes observed with Ca2+ are closely similar to those previously reported for Ca2+-induced dimerisation of alginate poly-l-guluronate and pectin poly-d-galacturonate chain-sequences in solution, and the magnitude of the c.d. change on gel formation is directly related to the proportion of these structural types present. It therefore appears that gel formation does not introduce optical artefacts such as have been reported for particulate systems or biological membranes. Similar spectral changes are observed on gelation of pectin with Sr2+, Ba2+, Cd2+, Ni2+, or Pb2+, but with minor alterations in the wavelength of maximum c.d. change. These subtle differences are interpreted as reflecting variation in binding-site geometry to accommodate ions of different size. Differences in c.d. behaviour with Mg2+, Ca2+, and Sr2+ are far greater for alginate than for pectin, consistent with the greater selectivity of ion-binding. Gelation of both alginate and pectin with Cu2+ is accompanied by spectral changes that are opposite in sign to those observed with other divalent cations, and span a much wider range of wavelengths. This suggests a different and less-specific binding mechanism, consistent with the known lack of selectivity of Cu2+ for different polyuronates. However, for alginate, there is also evidence of some specific interchain chelation. A minor enhancement of alginate c.d. in the presence of K+ ions is attributed to a decrease in charge density of the polymer chain by bound cations, with consequent increase in segment-segment association in solution. The sign and magnitude of this effect confirm the selectivity of polyuronates for divalent cation.
科研通智能强力驱动
Strongly Powered by AbleSci AI