k-最近邻算法
最近邻搜索
算法
计算机科学
非线性系统
最佳垃圾箱优先
维数(图论)
集合(抽象数据类型)
信号(编程语言)
分形维数
分形
最近邻链算法
内在维度
信号处理
模式识别(心理学)
人工智能
数学
数字信号处理
维数之咒
物理
数学分析
组合数学
树冠聚类算法
相关聚类
量子力学
聚类分析
计算机硬件
程序设计语言
作者
Christian Merkwirth,Ulrich Parlitz,Werner Lauterborn
出处
期刊:Physical review
日期:2000-08-01
卷期号:62 (2): 2089-2097
被引量:68
标识
DOI:10.1103/physreve.62.2089
摘要
A fast algorithm for exact and approximate nearest-neighbor searching is presented that is suitable for tasks encountered in nonlinear signal processing. Empirical benchmarks show that the algorithm's performance depends mainly on the (fractal) dimension D(d) of the data set, which is usually smaller than the dimension D(s) of the vector space in which the data points are embedded. We also compare the running time of our algorithm with those of two previously proposed algorithms for nearest-neighbor searching.
科研通智能强力驱动
Strongly Powered by AbleSci AI