Wnt信号通路
细胞外基质
细胞生物学
干瘪的
转化生长因子
信号转导
转化生长因子β
生物
化学
作者
Kuldeep Kumawat,Mark H. Menzen,I. Sophie T. Bos,Hoeke A. Baarsma,Pieter Borger,Michael Roth,Michael Tamm,Andrew J. Halayko,Mirjam Simoons,Alita Prins,Dirkje S. Postma,Martina Schmidt,Reinoud Gosens
摘要
Transforming growth factor β (TGF-β), a key mediator of fibrotic responses, is increased in asthma and drives airway remodeling by inducing expression of extracellular matrix (ECM) proteins. We investigated the molecular mechanisms underlying TGF-β-induced ECM expression by airway smooth muscle cells and demonstrate a novel link between TGF-β and Wingless/integrase 1 (WNT) signaling in ECM deposition. Airway smooth muscle expresses abundant WNT ligands, with the noncanonical WNT-5A being the most profoundly expressed. Interestingly, WNT-5A shows ∼2-fold higher abundance in airway smooth muscle cells isolated from individuals with asthma than individuals without asthma. WNT-5A is markedly induced in response to TGF-β (4-16-fold; EC₅₀ 0.3 ng/ml) and is required for collagen and fibronectin expression by airway smooth muscle. WNT-5A engages noncanonical WNT signaling pathways, as inhibition of Ca(2+) and c-Jun N-terminal kinase (JNK) signaling attenuated this TGF-β response, whereas the canonical WNT antagonist Dickkopf 1 (DKK-1) did not. Accordingly, WNT-5A induced JNK phosphorylation and nuclear translocation of nuclear factor of activated T cells c1 (NFATc1). Furthermore, silencing of the WNT-5A receptors Frizzled 8 (FZD8) and RYK attenuated TGF-β-induced ECM expression. Collectively, these findings demonstrate that noncanonical WNT-5A signaling is activated by and necessary for TGF-β-induced ECM production by airway smooth muscle cells, which could have significance in asthma pathogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI