Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule

对接(动物) 蛋白质数据库 蛋白质-配体对接 寻找对接的构象空间 蛋白质数据库 小分子 虚拟筛选 药物发现 大分子对接 化学 计算生物学 蛋白质结构 分子力学 结合位点 分子动力学 立体化学 生物化学 计算化学 生物 医学 护理部
作者
Yu Chen,D.G. Zhi
出处
期刊:Proteins [Wiley]
卷期号:43 (2): 217-226 被引量:332
标识
DOI:10.1002/1097-0134(20010501)43:2<217::aid-prot1032>3.0.co;2-g
摘要

Ligand–protein docking has been developed and used in facilitating new drug discoveries. In this approach, docking single or multiple small molecules to a receptor site is attempted to find putative ligands. A number of studies have shown that docking algorithms are capable of finding ligands and binding conformations at a receptor site close to experimentally determined structures. These algorithms are expected to be equally applicable to the identification of multiple proteins to which a small molecule can bind or weakly bind. We introduce a ligand–protein inverse-docking approach for finding potential protein targets of a small molecule by the computer-automated docking search of a protein cavity database. This database is developed from protein structures in the Protein Data Bank (PDB). Docking is conducted with a procedure involving multiple-conformer shape-matching alignment of a molecule to a cavity followed by molecular-mechanics torsion optimization and energy minimization on both the molecule and the protein residues at the binding region. Scoring is conducted by the evaluation of molecular-mechanics energy and, when applicable, by the further analysis of binding competitiveness against other ligands that bind to the same receptor site in at least one PDB entry. Testing results on two therapeutic agents, 4H-tamoxifen and vitamin E, showed that 50% of the computer-identified potential protein targets were implicated or confirmed by experiments. The application of this approach may facilitate the prediction of unknown and secondary therapeutic target proteins and those related to the side effects and toxicity of a drug or drug candidate. Proteins 2001;43:217–226. © 2001 Wiley-Liss, Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Tokgo采纳,获得10
1秒前
1秒前
科研通AI5应助鹤川采纳,获得10
1秒前
Hello应助琳儿真的很瘦了采纳,获得10
2秒前
爆米花应助刁刁采纳,获得10
2秒前
852应助科研小白采纳,获得10
2秒前
山橘月发布了新的文献求助10
5秒前
mingge发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
大个应助an采纳,获得10
8秒前
zho应助咋回事采纳,获得10
8秒前
水蜜桃完成签到,获得积分10
11秒前
CodeCraft应助tree采纳,获得10
11秒前
12秒前
13秒前
有没有大的帮帮忙完成签到,获得积分10
13秒前
13秒前
CipherSage应助华老五采纳,获得20
13秒前
逍遥丸子完成签到,获得积分10
13秒前
mingge完成签到,获得积分10
15秒前
15秒前
善学以致用应助小鱼采纳,获得10
16秒前
Owen应助渡己。采纳,获得10
16秒前
home完成签到,获得积分10
18秒前
FashionBoy应助Merry800213采纳,获得10
18秒前
18秒前
yuyu发布了新的文献求助10
19秒前
19秒前
momo完成签到,获得积分10
19秒前
阔达磬发布了新的文献求助10
20秒前
20秒前
在水一方应助abao采纳,获得10
22秒前
小蘑菇应助brian0326采纳,获得10
23秒前
刻苦复天完成签到 ,获得积分10
24秒前
24秒前
小酥肉发布了新的文献求助10
25秒前
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728757
求助须知:如何正确求助?哪些是违规求助? 3273785
关于积分的说明 9983412
捐赠科研通 2989116
什么是DOI,文献DOI怎么找? 1640181
邀请新用户注册赠送积分活动 779094
科研通“疑难数据库(出版商)”最低求助积分说明 747961