数学
符号(数学)
领域(数学分析)
节的
非线性系统
数学分析
序列(生物学)
薛定谔方程
纯数学
数学物理
物理
量子力学
遗传学
医学
生物
解剖
作者
Thomas Bartsch,Zhaoli Liu,Tobias Weth
标识
DOI:10.1081/pde-120028842
摘要
Abstract We prove the existence of sign changing solutions in H 1(ℝ N ) for a stationary Schrödinger equation −Δu + a(x)u = f(x, u) with superlinear and subcritical nonlinearity f, and control the number of nodal domains. If f is odd we obtain an unbounded sequence of sign changing solutions u k , k ≥ 1, so that u k has at most k + 1 nodal domains. The bound on the number of nodal domains follows from a nonlinear version of Courant's nodal domain theorem which we also prove.
科研通智能强力驱动
Strongly Powered by AbleSci AI