亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of color in face recognition

灰度 人工智能 面子(社会学概念) 计算机视觉 面部识别系统 计算机科学 感知 突出 低分辨率 模式识别(心理学) 心理学 高分辨率 图像(数学) 社会学 神经科学 地质学 遥感 社会科学
作者
Andrew W Yip,Pawan Sinha
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:2 (7): 596-596 被引量:34
标识
DOI:10.1167/2.7.596
摘要

One of the key challenges in face perception lies in determining the contribution of different cues to face identification. Here we focus on the role of color cues. Although color appears to be a salient attribute of faces, past research has suggested that it confers little recognition advantage for identifying people. A possible reason for the observed lack of a contribution of color to face recognition in these studies is that in situations where strong shape cues are available (as in high-resolution face images), performance may already be at ceiling and the contribution of color may not be evident. An interesting condition to examine, therefore, is one wherein shape cues are progressively degraded. The contribution of color to face recognition, if any, would be more evident under such conditions. To this end, we tested subjects' recognition performance with a set of famous faces that had been low-pass filtered at different thresholds. The faces were presented either in full-color or in grayscale. As in previous studies, we found no difference in performance for the color and grayscale conditions at high resolution; however, performance with color was significantly better than performance with grayscale images at lower resolutions. Our next experiment was designed to determine whether color contributes to face-recognition by providing diagnostic cues to identity or by facilitating low-level image analysis, such as segmentation. We tested subjects' performance with pseudo-color images that, we reasoned, would disrupt diagnostic cues but not low-level ones. We found performance with such images to be on par with true-color images. Taken together, our experimental results suggest that color does contribute to face recognition, and it does so by aiding low-level image analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
汉堡包应助LNE采纳,获得10
5秒前
机智大白菜真实的钥匙完成签到,获得积分10
15秒前
19秒前
时间的过客完成签到,获得积分10
21秒前
搜集达人应助科研通管家采纳,获得10
35秒前
李爱国应助科研通管家采纳,获得10
35秒前
情怀应助科研通管家采纳,获得80
35秒前
41秒前
42秒前
孤独的大灰狼完成签到 ,获得积分10
46秒前
LNE发布了新的文献求助10
47秒前
48秒前
LNE完成签到,获得积分10
58秒前
1分钟前
不知道是谁完成签到,获得积分10
1分钟前
FashionBoy应助梦华老师采纳,获得10
1分钟前
美罗培南完成签到,获得积分10
1分钟前
1分钟前
K.I.D完成签到,获得积分10
1分钟前
李健的小迷弟应助K.I.D采纳,获得10
1分钟前
1分钟前
梦华老师发布了新的文献求助10
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
wzm完成签到,获得积分10
1分钟前
1分钟前
wzm发布了新的文献求助10
1分钟前
酷酷的王完成签到 ,获得积分10
1分钟前
1分钟前
小胖完成签到 ,获得积分10
1分钟前
1分钟前
yyr完成签到 ,获得积分10
1分钟前
2分钟前
发嗲的凡蕾完成签到,获得积分20
2分钟前
麒麟发布了新的文献求助10
2分钟前
秋秋完成签到,获得积分10
2分钟前
Fighting完成签到,获得积分10
2分钟前
天天完成签到 ,获得积分10
2分钟前
就晚安喽完成签到 ,获得积分10
2分钟前
shuang完成签到 ,获得积分10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544380
求助须知:如何正确求助?哪些是违规求助? 3121574
关于积分的说明 9347880
捐赠科研通 2819813
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273