Heterogeneous electro-Fenton using modified iron–carbon as catalyst for 2,4-dichlorophenol degradation: Influence factors, mechanism and degradation pathway

2,4-二氯苯酚 催化作用 化学 甲酸 降级(电信) 草酸 X射线光电子能谱 核化学 浸出(土壤学) 电解 无机化学 化学工程 色谱法 电极 有机化学 土壤水分 土壤科学 物理化学 工程类 生物 电信 细菌 电解质 遗传学 计算机科学 环境科学
作者
Chao Zhang,Minghua Zhou,Gengbo Ren,Xinmin Yu,Liang Ma,Jie Yang,Fangke Yu
出处
期刊:Water Research [Elsevier]
卷期号:70: 414-424 被引量:281
标识
DOI:10.1016/j.watres.2014.12.022
摘要

Modified iron–carbon with polytetrafluoroethylene (PTFE) was firstly investigated as heterogeneous electro-Fenton (EF) catalyst for 2,4-dichlorophenol (2,4-DCP) degradation in near neutral pH condition. The catalyst was characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), and the effects of some important operating parameters such as current intensity and pH on the 2,4-DCP degradation were investigated. After the catalyst modification with 20% PTFE, the degradation performance maintained well with much lower iron leaching, and at current intensity 100 mA, initial pH 6.7, catalyst loading 6 g/L, the degradation efficiency of 2,4-DCP could exceed 95% within 120 min treatment. Two-stage pseudo first-order kinetics of 2,4-DCP degradation was observed, including a slow anodic oxidation stage (first-stage) and much faster heterogeneous EF oxidation (second-stage), in which the automatic drop of pH in the first-stage initiated the Fe2+ release from micro-electrolysis and thus benefited to the subsequent EF reaction. Aromatic intermediates such as 3,5-dichlorocatechol, 4,6-dichlororesorcinol and 2-chlorohydroquinone were detected by GC–MS. Oxalic acid, acetic acid, formic acid and Cl− were quantified by ion chromatograph. Based on these analysis as well as the detection of H2O2 and OH, a possible mechanism and degradation pathway for 2,4-DCP were proposed. This work demonstrated that such a heterogeneous EF using cheap modified Fe–C catalyst was promising for organic wastewater treatment in initial neutral pH condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a龙完成签到,获得积分10
刚刚
眯眯眼的老鼠完成签到,获得积分20
刚刚
无花果应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
wanci应助嗯哼采纳,获得10
1秒前
nanan完成签到,获得积分10
1秒前
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
Hungrylunch应助科研通管家采纳,获得20
1秒前
Cassie应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
暴躁四叔应助科研通管家采纳,获得20
1秒前
Zn应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
Zn应助科研通管家采纳,获得10
2秒前
2秒前
AN应助科研通管家采纳,获得10
2秒前
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
自由寻梅发布了新的文献求助30
3秒前
冰西瓜最棒_完成签到,获得积分10
3秒前
古怪小枫完成签到,获得积分10
4秒前
TiAmo完成签到 ,获得积分10
4秒前
康佳璐发布了新的文献求助10
5秒前
5秒前
Camellia完成签到 ,获得积分10
6秒前
6秒前
搜集达人应助佰斯特威采纳,获得30
6秒前
QXS完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672