Weakly-supervised convolutional neural networks for multimodal image registration

人工智能 计算机科学 卷积神经网络 体素 图像配准 基本事实 模式识别(心理学) 计算机视觉 地标 质心 推论 图像(数学)
作者
Yipeng Hu,Marc Modat,Eli Gibson,Wenqi Li,Nooshin Ghavami,Ester Bonmati,Guotai Wang,Steven Bandula,Caroline M. Moore,Mark Emberton,Sébastien Ourselin,J. Alison Noble,Dean C. Barratt,Tom Vercauteren
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:49: 1-13 被引量:376
标识
DOI:10.1016/j.media.2018.07.002
摘要

One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助BWZ采纳,获得10
刚刚
刚刚
1秒前
Ade完成签到,获得积分10
2秒前
2秒前
lx840518发布了新的文献求助10
2秒前
兴奋大开完成签到,获得积分10
3秒前
虚幻羊完成签到,获得积分20
3秒前
Meng完成签到,获得积分10
4秒前
张掖完成签到,获得积分10
4秒前
Lucas应助kangkang采纳,获得10
5秒前
大晨完成签到,获得积分10
5秒前
哈哈哈haha发布了新的文献求助20
6秒前
cc发布了新的文献求助10
6秒前
Yolo发布了新的文献求助10
6秒前
6秒前
allenice完成签到,获得积分10
6秒前
7秒前
7秒前
音乐发布了新的文献求助10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
华仔应助沙拉采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
Owen应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得30
9秒前
FashionBoy应助科研通管家采纳,获得30
9秒前
Orange应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助夏夏采纳,获得10
9秒前
英俊的铭应助夏夏采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
万能图书馆应助夏夏采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
科研通AI5应助夏夏采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762