Weakly-supervised convolutional neural networks for multimodal image registration

人工智能 计算机科学 卷积神经网络 体素 图像配准 基本事实 模式识别(心理学) 计算机视觉 地标 质心 推论 图像(数学)
作者
Yipeng Hu,Marc Modat,Eli Gibson,Wenqi Li,Nooshin Ghavami,Ester Bonmati,Guotai Wang,Steven Bandula,Caroline M. Moore,Mark Emberton,Sébastien Ourselin,J. Alison Noble,Dean C. Barratt,Tom Vercauteren
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:49: 1-13 被引量:376
标识
DOI:10.1016/j.media.2018.07.002
摘要

One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到,获得积分10
1秒前
1秒前
无花果应助啊实打实的卡采纳,获得10
1秒前
1秒前
充电宝应助砂砾采纳,获得10
2秒前
2秒前
自由可乐应助phonon采纳,获得100
2秒前
娄医生发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
好困应助噼里啪啦采纳,获得10
3秒前
紧张的夏兰关注了科研通微信公众号
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
lynn应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
寻道图强应助科研通管家采纳,获得30
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
小木虫完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助聪明的剑愁采纳,获得10
5秒前
云初完成签到,获得积分10
5秒前
Yu完成签到 ,获得积分10
5秒前
刘欢发布了新的文献求助10
5秒前
langwang完成签到,获得积分10
5秒前
来日可期发布了新的文献求助10
5秒前
bkagyin应助turtle_medchem采纳,获得10
6秒前
呦吼。。。完成签到,获得积分10
6秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180554
求助须知:如何正确求助?哪些是违规求助? 2830814
关于积分的说明 7981328
捐赠科研通 2492536
什么是DOI,文献DOI怎么找? 1329631
科研通“疑难数据库(出版商)”最低求助积分说明 635745
版权声明 602954