Weakly-supervised convolutional neural networks for multimodal image registration

人工智能 计算机科学 卷积神经网络 体素 图像配准 基本事实 模式识别(心理学) 计算机视觉 地标 质心 推论 图像(数学)
作者
Yipeng Hu,Marc Modat,Eli Gibson,Wenqi Li,Nooshin Ghavami,Ester Bonmati,Guotai Wang,Steven Bandula,Caroline M. Moore,Mark Emberton,Sébastien Ourselin,J. Alison Noble,Dean C. Barratt,Tom Vercauteren
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:49: 1-13 被引量:376
标识
DOI:10.1016/j.media.2018.07.002
摘要

One of the fundamental challenges in supervised learning for multimodal image registration is the lack of ground-truth for voxel-level spatial correspondence. This work describes a method to infer voxel-level transformation from higher-level correspondence information contained in anatomical labels. We argue that such labels are more reliable and practical to obtain for reference sets of image pairs than voxel-level correspondence. Typical anatomical labels of interest may include solid organs, vessels, ducts, structure boundaries and other subject-specific ad hoc landmarks. The proposed end-to-end convolutional neural network approach aims to predict displacement fields to align multiple labelled corresponding structures for individual image pairs during the training, while only unlabelled image pairs are used as the network input for inference. We highlight the versatility of the proposed strategy, for training, utilising diverse types of anatomical labels, which need not to be identifiable over all training image pairs. At inference, the resulting 3D deformable image registration algorithm runs in real-time and is fully-automated without requiring any anatomical labels or initialisation. Several network architecture variants are compared for registering T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients. A median target registration error of 3.6 mm on landmark centroids and a median Dice of 0.87 on prostate glands are achieved from cross-validation experiments, in which 108 pairs of multimodal images from 76 patients were tested with high-quality anatomical labels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助肉卷采纳,获得10
刚刚
温暖琦发布了新的文献求助10
1秒前
1秒前
wanwan应助乐天采纳,获得10
3秒前
好玩ab完成签到,获得积分10
4秒前
4秒前
momomo应助杨思睿采纳,获得50
6秒前
maodou完成签到,获得积分10
7秒前
liiiiiii发布了新的文献求助10
7秒前
8秒前
英俊的铭应助ShengzhangLiu采纳,获得10
9秒前
曾雅麟发布了新的文献求助10
9秒前
9秒前
unless完成签到,获得积分10
9秒前
某某某完成签到,获得积分10
10秒前
瑞秋完成签到,获得积分10
12秒前
13秒前
Huang完成签到 ,获得积分0
14秒前
14秒前
15秒前
含蓄文博完成签到 ,获得积分10
16秒前
orixero应助liiiiiii采纳,获得10
16秒前
18秒前
18秒前
19秒前
生动的采枫完成签到 ,获得积分10
21秒前
orixero应助aaaa采纳,获得10
21秒前
22秒前
某某某发布了新的文献求助10
23秒前
Zhupegnju发布了新的文献求助10
23秒前
肉卷发布了新的文献求助10
24秒前
过柱菜鸟发布了新的文献求助10
25秒前
momomo应助灰底爆米花采纳,获得10
25秒前
lcj完成签到,获得积分10
28秒前
科研通AI2S应助幸运鱼采纳,获得10
28秒前
天天快乐应助皮崇知采纳,获得10
28秒前
ShengzhangLiu发布了新的文献求助10
29秒前
化学胖子完成签到,获得积分10
29秒前
典雅的丹寒关注了科研通微信公众号
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425