纳米凝胶
胶束
Zeta电位
前药
阿霉素
材料科学
化学
药物输送
纳米颗粒
纳米技术
有机化学
生物化学
医学
外科
水溶液
化疗
作者
Yixin Zhu,Yakun Ma,Yanli Zhao,Min Yang,Lingbing Li
标识
DOI:10.1016/j.msec.2018.12.095
摘要
In this paper, to achieve the targeted ability of anti-tumor drug doxorubicin (DOX), enhance the treatment effect and reduce the side effect, a novel pH-sensitive and charge-convertible prodrug nanogel was prepared. Firstly, cis-aconitic anhydride-doxorubicin prodrug (CAD) and Pluronic F127-chitosan-CAD (F127-CS-CAD) conjugates were synthesized. Then the DOX loaded polyion complex micelles (F127-CS-CAD/CAD) were prepared by self-assembling, thus CAD was incorporated into micelles via electrostatic interactions between electronegative CAD and positively charged F127-CS-CAD and hydrophobic interactions. Finally a pH-responsive charge-convertible copolymer, folic acid modified gelatin (Gel-FA) was shielded on the surface of micelles and the Gel-FA/F127-CS-CAD/CAD nanogel was formed, the charge-convertible capability was evaluated through changes of the morphology and Zeta potential under different pH value environment by transmission electron microscopy (TEM) and Zeta potential analyzer. And in vitro pH-dependent and two-phase drug release from nanogel was also evaluated. In vitro anti-tumor activity of Gel-FA/F127-CS-CAD/CAD nanogel was performed on HeLa cells and HepG2 cells to prove the strong cell toxicity of nanogels. Finally, the in vivo safety experiments showed that the nanogel achieved the reducing the toxic side effects of DOX significantly.
科研通智能强力驱动
Strongly Powered by AbleSci AI