An effective partitional clustering algorithm based on new clustering validity index

聚类分析 CURE数据聚类算法 相关聚类 数据挖掘 计算机科学 树冠聚类算法 模糊聚类 数据流聚类 模式识别(心理学) 单连锁聚类 高维数据聚类 共识聚类 人工智能 确定数据集中的群集数
作者
En Zhu,Ruhui Ma
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:71: 608-621 被引量:56
标识
DOI:10.1016/j.asoc.2018.07.026
摘要

As an unsupervised pattern classification method, clustering partitions the input datasets into groups or clusters. It plays an important role in identifying the natural structure of the target datasets. Now, it has been widely used in data mining, pattern recognition, image processing and so on. However, due to different settings of the parameters and random selection of initial centers, traditional clustering algorithms may produce different clustering partitions for a single dataset. Clustering validity index (CVI) is an important method for evaluating the effect of clustering results generated by clustering algorithms. However, many of the existing CVIs suffer from complex computation, low time efficiency and narrow range of applications. In order to make clustering algorithms more stable, traditional K-means is firstly improved by the density parameters based initial center selection method other than randomly selecting initial centers. Then, in order to enlarge the application range of clustering and better evaluate the clustering partition results, a new variance based clustering validity index (VCVI) from the point of view of spatial distribution of datasets is designed. Finally, a new partitional clustering algorithm integrated with the improved K-means algorithm and the newly introduced VCVI is designed to optimize and determine the optimal clustering number (Kopt) for a wide range of datasets. Furthermore, the commonly used empirical rule Kmax⩽n is reasonably explained by the newly designed VCVI. The new algorithm integrated with VCVI is compared with traditional algorithms integrated with five commonly used CVIs. The experimental results show that our new clustering method is more accurate and stable while consuming relatively lower running time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助YixiaoWang采纳,获得10
1秒前
SciGPT应助chchjust采纳,获得30
2秒前
孤独的太清完成签到 ,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
yukicc完成签到,获得积分10
4秒前
4秒前
hh完成签到,获得积分10
7秒前
时倾完成签到,获得积分10
7秒前
清脆冬日完成签到 ,获得积分10
7秒前
8秒前
善学以致用应助Mipaa采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
积极松完成签到 ,获得积分10
11秒前
一又二分之一完成签到,获得积分10
12秒前
xieyangyu完成签到 ,获得积分10
12秒前
ARESCI发布了新的文献求助10
13秒前
lyp发布了新的文献求助10
14秒前
淡淡尔烟发布了新的文献求助10
16秒前
Gloyxtg发布了新的文献求助10
16秒前
思源应助王月帆采纳,获得10
17秒前
99668完成签到,获得积分10
18秒前
小马甲应助周美言采纳,获得10
18秒前
可爱的函函应助以鹿之路采纳,获得10
18秒前
Roxanne发布了新的文献求助20
18秒前
18秒前
Jasper应助星星采纳,获得10
19秒前
19秒前
kikeva发布了新的文献求助10
22秒前
情怀应助彩彩采纳,获得10
23秒前
大模型应助Heyley采纳,获得10
23秒前
科研通AI6应助hh采纳,获得10
23秒前
研友_VZG7GZ应助叶涛采纳,获得10
24秒前
海棠发布了新的文献求助10
25秒前
云上完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649984
求助须知:如何正确求助?哪些是违规求助? 4779520
关于积分的说明 15050791
捐赠科研通 4808902
什么是DOI,文献DOI怎么找? 2571905
邀请新用户注册赠送积分活动 1528157
关于科研通互助平台的介绍 1486950