An effective partitional clustering algorithm based on new clustering validity index

聚类分析 CURE数据聚类算法 相关聚类 数据挖掘 计算机科学 树冠聚类算法 模糊聚类 数据流聚类 模式识别(心理学) 单连锁聚类 高维数据聚类 共识聚类 人工智能 确定数据集中的群集数
作者
En Zhu,Ruhui Ma
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:71: 608-621 被引量:56
标识
DOI:10.1016/j.asoc.2018.07.026
摘要

As an unsupervised pattern classification method, clustering partitions the input datasets into groups or clusters. It plays an important role in identifying the natural structure of the target datasets. Now, it has been widely used in data mining, pattern recognition, image processing and so on. However, due to different settings of the parameters and random selection of initial centers, traditional clustering algorithms may produce different clustering partitions for a single dataset. Clustering validity index (CVI) is an important method for evaluating the effect of clustering results generated by clustering algorithms. However, many of the existing CVIs suffer from complex computation, low time efficiency and narrow range of applications. In order to make clustering algorithms more stable, traditional K-means is firstly improved by the density parameters based initial center selection method other than randomly selecting initial centers. Then, in order to enlarge the application range of clustering and better evaluate the clustering partition results, a new variance based clustering validity index (VCVI) from the point of view of spatial distribution of datasets is designed. Finally, a new partitional clustering algorithm integrated with the improved K-means algorithm and the newly introduced VCVI is designed to optimize and determine the optimal clustering number (Kopt) for a wide range of datasets. Furthermore, the commonly used empirical rule Kmax⩽n is reasonably explained by the newly designed VCVI. The new algorithm integrated with VCVI is compared with traditional algorithms integrated with five commonly used CVIs. The experimental results show that our new clustering method is more accurate and stable while consuming relatively lower running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
2秒前
健忘的白云完成签到 ,获得积分10
4秒前
完美世界应助super chan采纳,获得10
11秒前
13秒前
留胡子的乐蓉完成签到,获得积分10
16秒前
咕噜噜发布了新的文献求助10
17秒前
孔难破完成签到,获得积分10
18秒前
zho应助小赵小赵采纳,获得10
19秒前
20秒前
maox1aoxin应助冷傲的诗兰采纳,获得30
22秒前
欲望被鬼应助玛卡巴卡采纳,获得20
22秒前
fqy发布了新的文献求助10
24秒前
24秒前
鸠摩智完成签到,获得积分10
24秒前
华仔应助lxqd1采纳,获得10
25秒前
feihu发布了新的文献求助10
28秒前
蓝桉完成签到 ,获得积分10
30秒前
30秒前
隐形曼青应助杋困了采纳,获得10
30秒前
33秒前
34秒前
ccc发布了新的文献求助10
35秒前
劲秉应助LXY采纳,获得20
37秒前
38秒前
gzj关闭了gzj文献求助
38秒前
研友_5Z4ZA5发布了新的文献求助10
39秒前
辞忧发布了新的文献求助10
39秒前
40秒前
付理想发布了新的文献求助10
44秒前
万能图书馆应助啊宁采纳,获得10
47秒前
科研通AI5应助yang采纳,获得30
47秒前
cy32522关注了科研通微信公众号
47秒前
辞忧完成签到,获得积分10
48秒前
49秒前
Huong完成签到,获得积分10
51秒前
深情安青应助付理想采纳,获得10
51秒前
芳蔼发布了新的文献求助10
53秒前
53秒前
zzz完成签到,获得积分10
54秒前
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673597
求助须知:如何正确求助?哪些是违规求助? 3229144
关于积分的说明 9784321
捐赠科研通 2939733
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736307