Modeling and Analysis of Cascading Failures in Interdependent Cyber-Physical Systems

相互依存的网络 弹性(材料科学) 风险分析(工程) 复杂系统 计算机安全 关键基础设施 电力系统 可靠性工程
作者
Yingrui Zhang,Osman Yagan
出处
期刊:Conference on Decision and Control 卷期号:: 4731-4738 被引量:7
标识
DOI:10.1109/cdc.2018.8618710
摘要

Integrated cyber-physical systems (CPSs), such as the smart grid, are becoming the underpinning technology for major industries. A major concern regarding such systems are the seemingly unexpected large scale failures, which are often attributed to a small initial shock getting escalated due to intricate dependencies within and across the individual counterparts of the system. In this paper, we develop a novel interdependent system model to capture this phenomenon, also known as cascading failures. Our framework consists of two networks that have inherently different characteristics governing their intra-dependency: i) a cyber-network where a node is deemed to be functional as long as it belongs to the largest connected (i.e., giant) component; and ii) a physical network where nodes are given an initial flow and a capacity, and failure of a node results with redistribution of its flow to the remaining nodes, upon which further failures might take place due to overloading. Furthermore, it is assumed that these two networks are inter-dependent. For simplicity, we consider a one-to-one interdependency model where every node in the cyber-network is dependent upon and supports a single node in the physical network, and vice versa. We provide a thorough analysis of the dynamics of cascading failures in this interdependent system initiated with a random attack. The system robustness is quantified as the surviving fraction of nodes at the end of cascading failures, and is derived in terms of all network parameters involved. Analytic results are supported through an extensive numerical study. Among other things, these results demonstrate the ability of our model to capture the unexpected nature of large-scale failures, and provide insights on improving system robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhai发布了新的文献求助10
刚刚
刚刚
刚刚
村上春树的摩的完成签到 ,获得积分10
刚刚
刚刚
脑洞疼应助JACK采纳,获得10
1秒前
zhouyunan完成签到,获得积分10
1秒前
昵称发布了新的文献求助10
1秒前
1秒前
1秒前
馥日祎完成签到,获得积分10
1秒前
Ava应助Rui采纳,获得10
2秒前
coolkid完成签到 ,获得积分10
2秒前
贼拉瘦的美神完成签到,获得积分10
3秒前
tsy完成签到 ,获得积分10
4秒前
April发布了新的文献求助20
4秒前
5秒前
今后应助不安豁采纳,获得10
6秒前
huifang发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
67发布了新的文献求助10
7秒前
代萌萌完成签到,获得积分10
7秒前
啊哈哈哈发布了新的文献求助10
8秒前
8秒前
四喜格格完成签到,获得积分10
9秒前
科研通AI5应助Laus采纳,获得10
9秒前
Godspeed发布了新的文献求助10
10秒前
悦耳的乐松完成签到,获得积分10
11秒前
星星泡饭发布了新的文献求助10
11秒前
着急的语儿完成签到,获得积分10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得30
11秒前
差劲先森完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
科目三应助goodgoodstudy采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762