EdgeEye: An Edge Service Framework for Real-time Intelligent Video Analytics

GSM演进的增强数据速率 大数据 服务(商务) 移动边缘计算 边缘设备
作者
Peng Liu,Bozhao Qi,Suman Banerjee
标识
DOI:10.1145/3213344.3213345
摘要

Deep learning with Deep Neural Networks (DNNs) can achieve much higher accuracy on many computer vision tasks than classic machine learning algorithms. Because of the high demand for both computation and storage resources, DNNs are often deployed in the cloud. Unfortunately, executing deep learning inference in the cloud, especially for real-time video analysis, often incurs high bandwidth consumption, high latency, reliability issues, and privacy concerns. Moving the DNNs close to the data source with an edge computing paradigm is a good approach to address those problems. The lack of an open source framework with a high-level API also complicates the deployment of deep learning-enabled service at the Internet edge. This paper presents EdgeEye, an edge-computing framework for real-time intelligent video analytics applications. EdgeEye provides a high-level, task-specific API for developers so that they can focus solely on application logic. EdgeEye does so by enabling developers to transform models trained with popular deep learning frameworks to deployable components with minimal effort. It leverages the optimized inference engines from industry to achieve the optimized inference performance and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助ZFL采纳,获得10
刚刚
ttt完成签到,获得积分10
1秒前
DamienC发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
4秒前
宁静完成签到 ,获得积分10
4秒前
4秒前
顾矜应助miao采纳,获得10
4秒前
lastsnow完成签到 ,获得积分10
5秒前
Azlne发布了新的文献求助10
6秒前
别嚣张发布了新的文献求助10
6秒前
xiaoyi完成签到,获得积分10
7秒前
8秒前
123456qi发布了新的文献求助10
8秒前
嘉欣发布了新的文献求助10
8秒前
蒋美桥发布了新的文献求助10
9秒前
10秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
12秒前
小由同学完成签到,获得积分10
12秒前
shencheng完成签到,获得积分10
12秒前
伶俐的凉面应助小王梓采纳,获得10
13秒前
14秒前
Orange应助美妮采纳,获得10
16秒前
量子星尘发布了新的文献求助10
19秒前
xiaotian发布了新的文献求助10
19秒前
坚定的逍遥关注了科研通微信公众号
19秒前
123完成签到 ,获得积分10
22秒前
23秒前
莫羽倾尘发布了新的文献求助10
23秒前
24秒前
24秒前
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430672
求助须知:如何正确求助?哪些是违规求助? 4543691
关于积分的说明 14188718
捐赠科研通 4462088
什么是DOI,文献DOI怎么找? 2446408
邀请新用户注册赠送积分活动 1437782
关于科研通互助平台的介绍 1414523