A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors

列线图 神经内分泌肿瘤 医学 病理 内科学 神经内分泌肿瘤 放射科 肿瘤科
作者
Wenjie Liang,Pengfei Yang,Rui Huang,Lei Xu,Jiawei Wang,Weihai Liu,Lele Zhang,Dalong Wan,Qiang Huang,Yao Lu,Yu Kuang,Tianye Niu
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (2): 584-594 被引量:163
标识
DOI:10.1158/1078-0432.ccr-18-1305
摘要

The purpose of this study is to develop and validate a nomogram model combing radiomics features and clinical characteristics to preoperatively differentiate grade 1 and grade 2/3 tumors in patients with pancreatic neuroendocrine tumors (pNET).Experimental Design: A total of 137 patients who underwent contrast-enhanced CT from two hospitals were included in this study. The patients from the second hospital (n = 51) were selected as an independent validation set. The arterial phase in contrast-enhanced CT was selected for radiomics feature extraction. The Mann-Whitney U test and least absolute shrinkage and selection operator regression were applied for feature selection and radiomics signature construction. A combined nomogram model was developed by incorporating the radiomics signature with clinical factors. The association between the nomogram model and the Ki-67 index and rate of nuclear mitosis were also investigated respectively. The utility of the proposed model was evaluated using the ROC, area under ROC curve (AUC), calibration curve, and decision curve analysis (DCA). The Kaplan-Meier (KM) analysis was used for survival analysis.An eight-feature-combined radiomics signature was constructed as a tumor grade predictor. The nomogram model combining the radiomics signature with clinical stage showed the best performance (training set: AUC = 0.907; validation set: AUC = 0.891). The calibration curve and DCA demonstrated the clinical usefulness of the proposed nomogram. A significant correlation was observed between the developed nomogram and Ki-67 index and rate of nuclear mitosis, respectively. The KM analysis showed a significant difference between the survival of predicted grade 1 and grade 2/3 groups (P = 0.002).The combined nomogram model developed could be useful in differentiating grade 1 and grade 2/3 tumor in patients with pNETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助李婉辰采纳,获得10
3秒前
无花果应助西瓜采纳,获得10
3秒前
Xie应助一直小虾米采纳,获得10
4秒前
ZZ完成签到,获得积分10
5秒前
7秒前
9秒前
爵士黄瓜发布了新的文献求助10
11秒前
优美的风完成签到,获得积分10
12秒前
丘比特应助1234采纳,获得10
12秒前
aldehyde应助盒子采纳,获得10
13秒前
sunlihao发布了新的文献求助10
14秒前
FAYE完成签到,获得积分20
14秒前
16秒前
思源应助柔弱的千秋采纳,获得10
16秒前
迷路秋荷完成签到 ,获得积分10
17秒前
srq发布了新的文献求助10
18秒前
火的信仰完成签到 ,获得积分10
20秒前
西瓜发布了新的文献求助10
21秒前
wang完成签到,获得积分20
21秒前
SC234完成签到 ,获得积分10
24秒前
25秒前
26秒前
26秒前
猪猪hero应助srq采纳,获得10
26秒前
Jasper应助西瓜采纳,获得10
27秒前
27秒前
sunlihao完成签到,获得积分10
30秒前
看不了一点文献应助ZZZ采纳,获得20
30秒前
1234发布了新的文献求助10
31秒前
斯文败类应助ztq417采纳,获得10
32秒前
33秒前
科研通AI5应助胡八一采纳,获得10
33秒前
ddd发布了新的文献求助10
33秒前
今后应助喻踏歌采纳,获得10
35秒前
38秒前
wxy完成签到,获得积分10
38秒前
可耐的海莲完成签到,获得积分20
38秒前
科研同完成签到 ,获得积分10
40秒前
西瓜发布了新的文献求助10
43秒前
43秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Local and systemic effects of topical betulinic acid in a psoriasis-like inflammation model in mice 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261