A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors

列线图 医学 无线电技术 阶段(地层学) 内科学 核医学 接收机工作特性 放射科 肿瘤科 生物 古生物学
作者
Wenjie Liang,Pengfei Yang,Rui Huang,Lei Xu,Jiawei Wang,Weihai Liu,Lele Zhang,Dalong Wan,Qiang Huang,Yao Lu,Yu Kuang,Tianye Niu
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (2): 584-594 被引量:154
标识
DOI:10.1158/1078-0432.ccr-18-1305
摘要

Abstract Purpose: The purpose of this study is to develop and validate a nomogram model combing radiomics features and clinical characteristics to preoperatively differentiate grade 1 and grade 2/3 tumors in patients with pancreatic neuroendocrine tumors (pNET). Experimental Design: A total of 137 patients who underwent contrast-enhanced CT from two hospitals were included in this study. The patients from the second hospital (n = 51) were selected as an independent validation set. The arterial phase in contrast-enhanced CT was selected for radiomics feature extraction. The Mann–Whitney U test and least absolute shrinkage and selection operator regression were applied for feature selection and radiomics signature construction. A combined nomogram model was developed by incorporating the radiomics signature with clinical factors. The association between the nomogram model and the Ki-67 index and rate of nuclear mitosis were also investigated respectively. The utility of the proposed model was evaluated using the ROC, area under ROC curve (AUC), calibration curve, and decision curve analysis (DCA). The Kaplan–Meier (KM) analysis was used for survival analysis. Results: An eight-feature–combined radiomics signature was constructed as a tumor grade predictor. The nomogram model combining the radiomics signature with clinical stage showed the best performance (training set: AUC = 0.907; validation set: AUC = 0.891). The calibration curve and DCA demonstrated the clinical usefulness of the proposed nomogram. A significant correlation was observed between the developed nomogram and Ki-67 index and rate of nuclear mitosis, respectively. The KM analysis showed a significant difference between the survival of predicted grade 1 and grade 2/3 groups (P = 0.002). Conclusions: The combined nomogram model developed could be useful in differentiating grade 1 and grade 2/3 tumor in patients with pNETs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
完美世界应助幸福胡萝卜采纳,获得10
2秒前
通~发布了新的文献求助10
2秒前
3秒前
科目三应助Arnold采纳,获得10
3秒前
润润轩轩发布了新的文献求助10
4秒前
宗笑晴发布了新的文献求助10
4秒前
lucky完成签到,获得积分10
4秒前
糖糖发布了新的文献求助10
5秒前
5秒前
跳跃尔容完成签到,获得积分10
6秒前
wyblobin完成签到,获得积分10
6秒前
6秒前
7秒前
沉默沛岚完成签到,获得积分10
7秒前
丰知然应助宇文宛菡采纳,获得10
7秒前
所所应助tu采纳,获得30
8秒前
mechefy完成签到,获得积分10
8秒前
鲤鱼萧完成签到,获得积分10
9秒前
宗笑晴完成签到,获得积分10
9秒前
10秒前
小蘑菇应助头发乱了采纳,获得10
10秒前
代萌萌发布了新的文献求助10
11秒前
jucy发布了新的文献求助50
11秒前
11秒前
Lz完成签到,获得积分10
11秒前
Hello应助葛辉辉采纳,获得10
11秒前
秦嘉旎完成签到,获得积分10
12秒前
华仔应助通~采纳,获得10
12秒前
万能图书馆应助半颗橙子采纳,获得10
12秒前
樱铃完成签到,获得积分10
13秒前
13秒前
上官若男应助俭朴的明轩采纳,获得10
13秒前
1199发布了新的文献求助10
14秒前
英姑应助包容的过客采纳,获得10
15秒前
标致的战斗机完成签到,获得积分10
15秒前
科研人发布了新的文献求助10
16秒前
hl完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762