Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications

计算机科学 聚类分析 粒子群优化 群体智能 架空(工程) 网络数据包 无线传感器网络 计算机网络 无线自组网 路由协议 分布式计算 无线 人工智能 算法 电信 操作系统
作者
Muhammad Yeasir Arafat,Sangman Moh
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 8958-8976 被引量:186
标识
DOI:10.1109/jiot.2019.2925567
摘要

In recent years, unmanned aerial vehicle (UAV) networks have been a focus area of the academic and industrial research community. They have been used in many military and civilian applications. Emergency communication is one of the essential requirements for first responders and victims in the aftermath of natural disasters. In such scenarios, UAVs may configure ad hoc wireless networks to cover a large area. In UAV networks, however, localization and routing are challenging tasks owing to the high mobility, unstable links, dynamic topology, and limited energy of UAVs. Here, we propose swarm-intelligence-based localization (SIL) and clustering schemes in UAV networks for emergency communications. First, we propose a new 3-D SIL algorithm based on particle swarm optimization (PSO) that exploits the particle search space in a limited boundary by using the bounding box method. In the 3-D search space, anchor UAV nodes are randomly distributed and the SIL algorithm measures the distance to existing anchor nodes for estimating the location of the target UAV nodes. Convergence time and localization accuracy are improved with lower computational cost. Second, we propose an energy-efficient swarm-intelligence-based clustering (SIC) algorithm based on PSO, in which the particle fitness function is exploited for intercluster distance, intracluster distance, residual energy, and geographic location. For energy-efficient clustering, cluster heads are selected based on improved particle optimization. The proposed SIC outperforms five typical routing protocols regarding packet delivery ratio, average end-to-end delay, and routing overhead. Moreover, SIC consumes less energy and prolongs network lifetime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚湖完成签到,获得积分10
1秒前
kento发布了新的文献求助30
1秒前
2秒前
wdwd完成签到,获得积分10
3秒前
3秒前
爆米花应助喵喵同学你好采纳,获得10
3秒前
幻想Cloudy完成签到 ,获得积分0
3秒前
wanci应助丰富的慕卉采纳,获得10
4秒前
kk完成签到,获得积分10
5秒前
哦哦发布了新的文献求助10
6秒前
困敦发布了新的文献求助10
6秒前
hgq发布了新的文献求助10
8秒前
burrrrr完成签到,获得积分10
12秒前
14秒前
15秒前
wanci应助薛同学采纳,获得10
16秒前
JamesPei应助lishihao采纳,获得10
16秒前
17秒前
雪白雍发布了新的文献求助30
17秒前
18秒前
19秒前
19秒前
猪蹄侠客发布了新的文献求助10
19秒前
我ppp发布了新的文献求助10
20秒前
陈老板发布了新的文献求助10
20秒前
澡雪完成签到,获得积分10
20秒前
21秒前
crystal发布了新的文献求助80
21秒前
21秒前
Singularity应助月yue采纳,获得10
22秒前
Stove发布了新的文献求助10
23秒前
23秒前
burrrrr发布了新的文献求助10
23秒前
24秒前
雷123发布了新的文献求助10
24秒前
儿科发布了新的文献求助30
25秒前
8R60d8应助好好学习采纳,获得10
25秒前
积极以彤发布了新的文献求助10
25秒前
小竹爱科研完成签到,获得积分10
27秒前
lishihao完成签到,获得积分10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240