Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications

计算机科学 聚类分析 粒子群优化 群体智能 架空(工程) 网络数据包 无线传感器网络 计算机网络 无线自组网 路由协议 分布式计算 无线 人工智能 算法 电信 操作系统
作者
Muhammad Yeasir Arafat,Sangman Moh
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 8958-8976 被引量:186
标识
DOI:10.1109/jiot.2019.2925567
摘要

In recent years, unmanned aerial vehicle (UAV) networks have been a focus area of the academic and industrial research community. They have been used in many military and civilian applications. Emergency communication is one of the essential requirements for first responders and victims in the aftermath of natural disasters. In such scenarios, UAVs may configure ad hoc wireless networks to cover a large area. In UAV networks, however, localization and routing are challenging tasks owing to the high mobility, unstable links, dynamic topology, and limited energy of UAVs. Here, we propose swarm-intelligence-based localization (SIL) and clustering schemes in UAV networks for emergency communications. First, we propose a new 3-D SIL algorithm based on particle swarm optimization (PSO) that exploits the particle search space in a limited boundary by using the bounding box method. In the 3-D search space, anchor UAV nodes are randomly distributed and the SIL algorithm measures the distance to existing anchor nodes for estimating the location of the target UAV nodes. Convergence time and localization accuracy are improved with lower computational cost. Second, we propose an energy-efficient swarm-intelligence-based clustering (SIC) algorithm based on PSO, in which the particle fitness function is exploited for intercluster distance, intracluster distance, residual energy, and geographic location. For energy-efficient clustering, cluster heads are selected based on improved particle optimization. The proposed SIC outperforms five typical routing protocols regarding packet delivery ratio, average end-to-end delay, and routing overhead. Moreover, SIC consumes less energy and prolongs network lifetime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhanghan完成签到,获得积分10
1秒前
Dr发布了新的文献求助10
1秒前
1秒前
落叶应助tian采纳,获得10
1秒前
佳丽完成签到,获得积分10
1秒前
佛了欢喜完成签到,获得积分10
1秒前
想喝冰美完成签到,获得积分10
1秒前
Aoia完成签到,获得积分10
2秒前
晨丶完成签到,获得积分10
2秒前
3秒前
11完成签到,获得积分20
3秒前
demom完成签到 ,获得积分10
4秒前
深情安青应助西海岸的风采纳,获得10
5秒前
lyan完成签到,获得积分10
5秒前
小艾同学完成签到,获得积分10
5秒前
桃子完成签到,获得积分10
7秒前
边牧小C应助swj采纳,获得10
7秒前
DireWolf完成签到 ,获得积分10
7秒前
愉快的楷瑞完成签到,获得积分10
7秒前
7秒前
呆萌代桃发布了新的文献求助10
8秒前
汉堡包应助11采纳,获得10
8秒前
斯文败类应助研友_Z1xNWn采纳,获得10
9秒前
ding应助给我个二硫碘化钾采纳,获得10
9秒前
谨慎不二发布了新的文献求助10
10秒前
11秒前
无限的胜发布了新的文献求助30
12秒前
666发布了新的文献求助10
12秒前
12秒前
12秒前
枝杲发布了新的文献求助10
12秒前
13秒前
碧阳的尔风完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
couletian完成签到 ,获得积分10
14秒前
vivre223完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
唠叨的曼易完成签到,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009429
求助须知:如何正确求助?哪些是违规求助? 3549323
关于积分的说明 11301690
捐赠科研通 3283833
什么是DOI,文献DOI怎么找? 1810413
邀请新用户注册赠送积分活动 886275
科研通“疑难数据库(出版商)”最低求助积分说明 811301