Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications

计算机科学 聚类分析 粒子群优化 群体智能 架空(工程) 网络数据包 无线传感器网络 计算机网络 无线自组网 路由协议 分布式计算 无线 人工智能 算法 电信 操作系统
作者
Muhammad Yeasir Arafat,Sangman Moh
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 8958-8976 被引量:186
标识
DOI:10.1109/jiot.2019.2925567
摘要

In recent years, unmanned aerial vehicle (UAV) networks have been a focus area of the academic and industrial research community. They have been used in many military and civilian applications. Emergency communication is one of the essential requirements for first responders and victims in the aftermath of natural disasters. In such scenarios, UAVs may configure ad hoc wireless networks to cover a large area. In UAV networks, however, localization and routing are challenging tasks owing to the high mobility, unstable links, dynamic topology, and limited energy of UAVs. Here, we propose swarm-intelligence-based localization (SIL) and clustering schemes in UAV networks for emergency communications. First, we propose a new 3-D SIL algorithm based on particle swarm optimization (PSO) that exploits the particle search space in a limited boundary by using the bounding box method. In the 3-D search space, anchor UAV nodes are randomly distributed and the SIL algorithm measures the distance to existing anchor nodes for estimating the location of the target UAV nodes. Convergence time and localization accuracy are improved with lower computational cost. Second, we propose an energy-efficient swarm-intelligence-based clustering (SIC) algorithm based on PSO, in which the particle fitness function is exploited for intercluster distance, intracluster distance, residual energy, and geographic location. For energy-efficient clustering, cluster heads are selected based on improved particle optimization. The proposed SIC outperforms five typical routing protocols regarding packet delivery ratio, average end-to-end delay, and routing overhead. Moreover, SIC consumes less energy and prolongs network lifetime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助邓木木采纳,获得10
刚刚
郑阔完成签到,获得积分10
1秒前
yfy_fairy完成签到,获得积分10
1秒前
兴奋的万声完成签到,获得积分10
2秒前
在水一方应助Cpp采纳,获得10
2秒前
2秒前
3秒前
3秒前
听风完成签到 ,获得积分10
4秒前
4秒前
王修强发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
ESLG发布了新的文献求助10
5秒前
贪玩翎完成签到,获得积分10
5秒前
why完成签到,获得积分10
5秒前
好好好完成签到,获得积分10
5秒前
磊哥1233发布了新的文献求助10
6秒前
6秒前
子车一手完成签到,获得积分10
7秒前
愉快迎南完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
76542cu发布了新的文献求助10
9秒前
yjy完成签到,获得积分10
9秒前
汉堡包应助Yddear采纳,获得20
9秒前
Zerolucky关注了科研通微信公众号
9秒前
丘比特应助xin采纳,获得10
9秒前
不吃香菜发布了新的文献求助10
9秒前
ada发布了新的文献求助10
10秒前
sss发布了新的文献求助30
10秒前
zhenghua发布了新的文献求助10
10秒前
田様应助cijing采纳,获得10
10秒前
Aurora发布了新的文献求助10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239828
求助须知:如何正确求助?哪些是违规求助? 4407067
关于积分的说明 13717174
捐赠科研通 4275655
什么是DOI,文献DOI怎么找? 2346104
邀请新用户注册赠送积分活动 1343227
关于科研通互助平台的介绍 1301291