Improving clinical refractive results of cataract surgery by machine learning

支持向量机 白内障手术 激光矫视 计算机科学 工作流程 人工智能 机器学习 人工神经网络 医学 眼科 角膜 数据库
作者
Martin Šramka,Martin Slovák,Jana Tučková,Pavel Stodůlka
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:7: e7202-e7202 被引量:47
标识
DOI:10.7717/peerj.7202
摘要

To evaluate the potential of the Support Vector Machine Regression model (SVM-RM) and Multilayer Neural Network Ensemble model (MLNN-EM) to improve the intraocular lens (IOL) power calculation for clinical workflow.Current IOL power calculation methods are limited in their accuracy with the possibility of decreased accuracy especially in eyes with an unusual ocular dimension. In case of an improperly calculated power of the IOL in cataract or refractive lens replacement surgery there is a risk of re-operation or further refractive correction. This may create potential complications and discomfort for the patient.A dataset containing information about 2,194 eyes was obtained using data mining process from the Electronic Health Record (EHR) system database of the Gemini Eye Clinic. The dataset was optimized and split into the selection set (used in the design for models and training), and the verification set (used in the evaluation). The set of mean prediction errors (PEs) and the distribution of predicted refractive errors were evaluated for both models and clinical results (CR).Both models performed significantly better for the majority of the evaluated parameters compared with the CR. There was no significant difference between both evaluated models. In the ±0.50 D PE category both SVM-RM and MLNN-EM were slightly better than the Barrett Universal II formula, which is often presented as the most accurate calculation formula.In comparison to the current clinical method, both SVM-RM and MLNN-EM have achieved significantly better results in IOL calculations and therefore have a strong potential to improve clinical cataract refractive outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后问玉发布了新的文献求助10
刚刚
江枫发布了新的文献求助10
1秒前
1秒前
动人的书雪完成签到,获得积分10
3秒前
4秒前
znn完成签到 ,获得积分10
4秒前
柔弱藏今发布了新的文献求助10
5秒前
Anyixx完成签到 ,获得积分10
5秒前
6秒前
上官若男应助背后问玉采纳,获得10
8秒前
xiaoming发布了新的文献求助30
8秒前
9秒前
我是老大应助静子采纳,获得10
10秒前
李爱国应助JUNJIU采纳,获得20
11秒前
斯文败类应助郑晓漫采纳,获得10
12秒前
12秒前
14秒前
14秒前
CR完成签到 ,获得积分10
15秒前
Ant1body完成签到,获得积分10
15秒前
15秒前
15秒前
虚心完成签到 ,获得积分10
19秒前
椰子树关注了科研通微信公众号
19秒前
yyshhcyuwhegy完成签到,获得积分10
20秒前
科研通AI5应助柔弱藏今采纳,获得10
21秒前
peter应助任性的大侠采纳,获得30
21秒前
jovrtic发布了新的文献求助10
22秒前
23秒前
ophcyl完成签到,获得积分20
23秒前
24秒前
24秒前
好运爆彭发布了新的文献求助10
28秒前
一手少年完成签到,获得积分10
28秒前
30秒前
郑晓漫发布了新的文献求助10
31秒前
31秒前
bkagyin应助racill采纳,获得20
31秒前
居嵘完成签到 ,获得积分10
31秒前
33秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681301
求助须知:如何正确求助?哪些是违规求助? 3233325
关于积分的说明 9807755
捐赠科研通 2944658
什么是DOI,文献DOI怎么找? 1614917
邀请新用户注册赠送积分活动 762388
科研通“疑难数据库(出版商)”最低求助积分说明 737381