亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Qi应助诚心的月光采纳,获得10
8秒前
zhengqisong发布了新的文献求助10
9秒前
11秒前
12秒前
mrcle完成签到,获得积分10
13秒前
桐桐应助zhengqisong采纳,获得10
15秒前
Birdy发布了新的文献求助10
17秒前
miracle1005发布了新的文献求助10
23秒前
24秒前
英勇新烟完成签到,获得积分10
28秒前
科研小白发布了新的文献求助10
29秒前
33秒前
miracle1005完成签到,获得积分10
34秒前
36秒前
轻松的天德完成签到,获得积分20
39秒前
科研通AI5应助受伤胡萝卜采纳,获得10
41秒前
Qi应助叫我陈老师啊采纳,获得50
41秒前
Wang发布了新的文献求助10
45秒前
54秒前
李健的小迷弟应助家湘采纳,获得10
56秒前
57秒前
57秒前
易殇发布了新的文献求助30
1分钟前
1分钟前
QQ发布了新的文献求助10
1分钟前
李健的小迷弟应助高强采纳,获得10
1分钟前
Wang完成签到,获得积分10
1分钟前
ling361完成签到,获得积分10
1分钟前
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
1分钟前
高强完成签到,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
卷卷完成签到 ,获得积分10
1分钟前
高强发布了新的文献求助10
1分钟前
易殇完成签到,获得积分20
1分钟前
思源应助科研小白采纳,获得10
1分钟前
1分钟前
YOLO完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412362
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832