Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
颜云尔发布了新的文献求助10
2秒前
天天快乐应助tay采纳,获得10
3秒前
chen发布了新的文献求助10
4秒前
酷波er应助girl采纳,获得10
4秒前
4秒前
5秒前
猫南北完成签到,获得积分10
5秒前
江恋完成签到,获得积分10
8秒前
GGBOND发布了新的文献求助10
11秒前
13秒前
hhhblabla应助yyyyyyy111采纳,获得10
15秒前
哈哈发布了新的文献求助10
16秒前
21秒前
23秒前
背后初南完成签到,获得积分10
24秒前
神勇馒头完成签到,获得积分10
24秒前
GGBOND发布了新的文献求助10
25秒前
25秒前
26秒前
以戈完成签到,获得积分10
28秒前
30秒前
泡泡脑瓜发布了新的文献求助10
31秒前
358489228完成签到,获得积分10
31秒前
32秒前
xww发布了新的文献求助10
34秒前
35秒前
神勇馒头发布了新的文献求助10
38秒前
38秒前
chen完成签到,获得积分10
40秒前
cindywu发布了新的文献求助10
40秒前
贰叁发布了新的文献求助10
41秒前
42秒前
量子星尘发布了新的文献求助10
43秒前
44秒前
Lu发布了新的文献求助10
46秒前
47秒前
泡泡脑瓜关注了科研通微信公众号
48秒前
丫丫丫完成签到,获得积分20
49秒前
无花果应助GGBOND采纳,获得10
49秒前
跳跃盼波完成签到,获得积分10
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105