Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助yr888采纳,获得10
1秒前
liu.lzy完成签到,获得积分10
1秒前
Honahlee发布了新的文献求助10
1秒前
jpc完成签到,获得积分10
1秒前
俊逸的无心完成签到,获得积分20
1秒前
1秒前
小青椒应助盷昀采纳,获得50
2秒前
2秒前
糜厉完成签到,获得积分10
2秒前
傲娇以寒完成签到 ,获得积分10
3秒前
3秒前
绿L发布了新的文献求助10
3秒前
3秒前
3秒前
小辰发布了新的文献求助10
3秒前
iNk应助帅气善斓采纳,获得20
3秒前
可爱的函函应助花样年华采纳,获得10
4秒前
科研小菜鸡完成签到,获得积分10
4秒前
波西米亚完成签到,获得积分10
4秒前
4秒前
科研通AI6应助荒林采纳,获得10
4秒前
felix完成签到,获得积分10
4秒前
半农发布了新的文献求助10
4秒前
罗wq发布了新的文献求助10
5秒前
怕黑雨竹完成签到,获得积分10
5秒前
沉静从蓉发布了新的文献求助10
5秒前
5秒前
6秒前
默默蘑菇完成签到,获得积分10
6秒前
邓炎林发布了新的文献求助10
6秒前
6秒前
阿浩完成签到,获得积分10
7秒前
蒙蒙完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836