Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XylonYu完成签到,获得积分10
刚刚
华仔应助碧蓝碧凡采纳,获得10
1秒前
2秒前
超勍发布了新的文献求助10
6秒前
小马甲应助yuanshl1985采纳,获得10
6秒前
zhuxiaonian完成签到,获得积分10
9秒前
田様应助淘气科研采纳,获得10
9秒前
chenyi完成签到,获得积分10
10秒前
zyyyy完成签到,获得积分10
10秒前
奶黄包完成签到 ,获得积分10
10秒前
SYLH应助海阔天空采纳,获得10
10秒前
10秒前
机灵又蓝完成签到,获得积分10
11秒前
张土豆完成签到 ,获得积分10
11秒前
善学以致用应助小王采纳,获得10
11秒前
orang完成签到,获得积分10
12秒前
巧巧艾完成签到,获得积分10
12秒前
13秒前
邵洋完成签到,获得积分10
13秒前
sl发布了新的文献求助10
13秒前
14秒前
小迪迦奥特曼完成签到,获得积分10
14秒前
14秒前
cckk发布了新的文献求助10
15秒前
夏目由美完成签到 ,获得积分10
15秒前
Jasper应助哦哦哦采纳,获得10
16秒前
YYD完成签到,获得积分10
16秒前
超勍完成签到,获得积分10
16秒前
碧蓝碧凡发布了新的文献求助10
17秒前
Popeye应助鹤鸣采纳,获得30
17秒前
YYD发布了新的文献求助10
18秒前
yuanshl1985发布了新的文献求助10
18秒前
积极的黑猫完成签到,获得积分10
19秒前
GB完成签到 ,获得积分10
19秒前
Metx完成签到 ,获得积分10
20秒前
孤独的涔完成签到,获得积分10
21秒前
Jay完成签到,获得积分10
21秒前
22秒前
深情安青应助hf采纳,获得10
24秒前
学不懂数学应助大观天下采纳,获得10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029