Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
blush完成签到,获得积分10
1秒前
1秒前
CodeCraft应助甜甜谷波采纳,获得10
2秒前
sakris完成签到 ,获得积分10
2秒前
怡然太阳发布了新的文献求助10
2秒前
blush发布了新的文献求助10
5秒前
6秒前
6秒前
桐桐应助甜甜亦丝采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
鱼鱼完成签到 ,获得积分10
9秒前
11秒前
汉堡包应助人间不清醒采纳,获得10
12秒前
香蕉觅云应助林途采纳,获得10
13秒前
coco发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
fifteen应助我们太久没见了采纳,获得10
16秒前
18秒前
kunny完成签到 ,获得积分10
19秒前
20秒前
科研通AI6应助qi采纳,获得30
20秒前
21秒前
尧风完成签到 ,获得积分10
21秒前
21秒前
22秒前
火之高兴完成签到,获得积分10
22秒前
动听千风完成签到,获得积分10
23秒前
快乐小狗发布了新的文献求助10
23秒前
无情颖完成签到 ,获得积分10
24秒前
甜甜亦丝发布了新的文献求助10
25秒前
25秒前
汉堡包应助迷人的山灵采纳,获得10
25秒前
25秒前
bkagyin应助孙勇发采纳,获得10
26秒前
量子星尘发布了新的文献求助10
26秒前
林途发布了新的文献求助10
27秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5134862
求助须知:如何正确求助?哪些是违规求助? 4335512
关于积分的说明 13506957
捐赠科研通 4173083
什么是DOI,文献DOI怎么找? 2288120
邀请新用户注册赠送积分活动 1288949
关于科研通互助平台的介绍 1229971