Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
刚刚
恰个泡芙发布了新的文献求助10
刚刚
刚刚
Aamidtou发布了新的文献求助10
1秒前
manyi1972完成签到,获得积分10
1秒前
张萌洁完成签到,获得积分10
1秒前
leadsyew完成签到,获得积分10
1秒前
2秒前
俊逸友蕊完成签到,获得积分20
3秒前
3秒前
HHH完成签到,获得积分10
3秒前
longtengfei完成签到,获得积分10
4秒前
4秒前
4秒前
科研通AI6应助江恪采纳,获得10
5秒前
Bright发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
9秒前
科研狗发布了新的文献求助10
9秒前
马海英发布了新的文献求助10
10秒前
cc完成签到,获得积分10
12秒前
闪闪谷槐发布了新的文献求助10
12秒前
一半一半完成签到 ,获得积分10
13秒前
14秒前
爆米花应助橘子采纳,获得10
14秒前
serendipity完成签到,获得积分10
15秒前
Jared应助asdxsweef采纳,获得10
15秒前
终醒发布了新的文献求助10
15秒前
overa_完成签到,获得积分10
16秒前
16秒前
cc发布了新的文献求助10
17秒前
有为发布了新的文献求助10
17秒前
在水一方应助七七采纳,获得10
17秒前
17秒前
小孙完成签到 ,获得积分10
19秒前
zlll发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632146
求助须知:如何正确求助?哪些是违规求助? 4726435
关于积分的说明 14981405
捐赠科研通 4790127
什么是DOI,文献DOI怎么找? 2558203
邀请新用户注册赠送积分活动 1518601
关于科研通互助平台的介绍 1479045