Content Popularity Prediction Towards Location-Aware Mobile Edge Caching

计算机科学 回程(电信) 隐藏物 后悔 利用 算法 数据挖掘 机器学习 基站 计算机网络 计算机安全
作者
Peng Yang,Ning Zhang,Shan Zhang,Li Yu,Junshan Zhang, Shen
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 915-929 被引量:164
标识
DOI:10.1109/tmm.2018.2870521
摘要

Mobile edge caching aims to enable content delivery within the radio access network, which effectively alleviates the backhaul burden and reduces response time. To fully exploit edge storage resources, the most popular contents should be identified and cached. Observing that user demands on certain contents vary greatly at different locations, this paper devises location-customized caching schemes to maximize the total content hit rate. Specifically, a linear model is used to estimate the future content hit rate. For the case with zero-mean noise, a ridge regression-based online algorithm with positive perturbation is proposed. Regret analysis indicates that the hit rate achieved by the proposed algorithm asymptotically approaches that of the optimal caching strategy in the long run. When the noise structure is unknown, an $H_{\infty }$ filter-based online algorithm is devised by taking a prescribed threshold as input, which guarantees prediction accuracy even under the worst-case noise process. Both online algorithms require no training phases and, hence, are robust to the time-varying user demands. The estimation errors of both algorithms are numerically analyzed. Moreover, extensive experiments using real-world datasets are conducted to validate the applicability of the proposed algorithms. It is demonstrated that those algorithms can be applied to scenarios with different noise features, and are able to make adaptive caching decisions, achieving a content hit rate that is comparable to that via the hindsight optimal strategy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WJZ完成签到 ,获得积分10
1秒前
优美平凡发布了新的文献求助150
2秒前
彭于晏应助gkq采纳,获得10
3秒前
112233发布了新的文献求助10
3秒前
八十八夜的茶摘完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
李爱国应助Nov采纳,获得10
10秒前
10秒前
丁丁发布了新的文献求助10
11秒前
11秒前
12秒前
Liu完成签到,获得积分10
12秒前
13秒前
gkq发布了新的文献求助10
15秒前
风清扬发布了新的文献求助10
16秒前
18秒前
华仔应助袁向薇采纳,获得10
18秒前
北北完成签到,获得积分10
19秒前
19秒前
酷波er应助实现一个梦想采纳,获得30
20秒前
20秒前
20秒前
123完成签到,获得积分10
20秒前
21秒前
阳阳发布了新的文献求助10
21秒前
Tourist应助djbj2022采纳,获得10
21秒前
健壮易巧完成签到,获得积分10
21秒前
123发布了新的文献求助10
22秒前
善学以致用应助Rian采纳,获得10
23秒前
23秒前
23秒前
TEMPO发布了新的文献求助10
23秒前
25秒前
26秒前
Nov发布了新的文献求助10
26秒前
秘书发布了新的文献求助10
26秒前
26秒前
冷傲向雪完成签到,获得积分20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741