Improved MAR Natural Feature Recognition Algorithm Based on SURF and ORB

人工智能 特征检测(计算机视觉) 计算机科学 特征提取 特征(语言学) 计算机视觉 模式识别(心理学) 高斯模糊 Orb(光学) 图像渐变 定向梯度直方图 图像处理 图像直方图 直方图 图像(数学) 二值图像 图像复原 哲学 语言学
作者
Feng Cheng,Zhenjian Yang,Li Wang,Yanze Li
标识
DOI:10.1109/snsp.2018.00093
摘要

To solve the problem of slow image feature extraction and poor matching accuracy in mobile augmented reality (MAR) scene recognition, this paper proposes an improved natural feature recognition algorithm based on SURF(Speeded Up Robust Features) and ORB(Oriented FAST and Rotated BRIEF). Firstly, the image is preprocessed, including Gaussian smoothing, grayscale and histogram equalization to reduce the impacts of noise on image feature extraction; the image can be normalized through extracting useful information of image features, and then the image center will be selected as the feature point. Secondly, the SURF and ORB algorithm are respectively used to describe the image feature points to determine the orientation of the image feature points so that the image could have the rotation invariance. Finally, the K-Nearest Neighbors (KNN) algorithm is used to select the SURF space and the ORB spatial neighboring image, respectively, and the image weight, i.e. the weighted KNN algorithm, is given to form a new image set, and the image with the smallest weight is selected as the matching image. Experimental results show that when the feature extraction time and matching time are less than 3 ms on Ordinary laptop, meanwhile the image matching accuracy is as high as 92.5%, the computing speed and matching accuracy are better than traditional algorithms. Therefore, the natural feature recognition of the image can be realized in real time and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuHS发布了新的文献求助10
1秒前
Owen应助wei采纳,获得10
1秒前
李健应助何佳妮采纳,获得10
2秒前
英姑应助天真的冬寒采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
5秒前
7秒前
桐桐应助高姐姐采纳,获得10
8秒前
lucy4472完成签到,获得积分20
8秒前
9秒前
YH应助尊敬寒松采纳,获得50
9秒前
Tsui发布了新的文献求助10
9秒前
11秒前
Tuan发布了新的文献求助10
11秒前
九湖夷上发布了新的文献求助10
12秒前
Flying016发布了新的文献求助30
13秒前
研友_ZrldbL发布了新的文献求助30
13秒前
14秒前
Miracle发布了新的文献求助10
15秒前
Ting完成签到,获得积分10
16秒前
CZYW完成签到 ,获得积分10
16秒前
18秒前
Tuan完成签到,获得积分10
21秒前
黄东胜完成签到,获得积分10
21秒前
24秒前
Yin完成签到,获得积分10
24秒前
25秒前
25秒前
Orange应助Miracle采纳,获得10
25秒前
wolr发布了新的文献求助10
25秒前
笨笨完成签到,获得积分10
26秒前
传奇3应助程程采纳,获得10
26秒前
26秒前
天真的冬寒完成签到,获得积分20
26秒前
29秒前
Yuanyuan发布了新的文献求助10
30秒前
linnnn发布了新的文献求助10
31秒前
周周发布了新的文献求助10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844