A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

影响力营销 选择(遗传算法) 社会营销 计算机科学 营销 业务 广告 市场营销管理 人工智能 关系营销
作者
Rakesh R. Mallipeddi,Subodha Kumar,Chelliah Sriskandarajah,Yunxia Zhu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:35
标识
DOI:10.2139/ssrn.3255198
摘要

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding, i.e., identification of influencers to optimally post a firm's message or advertisement, neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of the collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial-time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
爱听歌安彤完成签到,获得积分10
1秒前
lxt完成签到,获得积分10
1秒前
1秒前
1秒前
aaa完成签到,获得积分10
1秒前
xixixi完成签到,获得积分10
1秒前
Akim应助Fezco采纳,获得10
1秒前
sisi完成签到,获得积分10
1秒前
lyy发布了新的文献求助10
1秒前
时冬冬应助daiduo采纳,获得20
2秒前
小徐801完成签到,获得积分10
2秒前
yszyy23完成签到,获得积分10
2秒前
善学以致用应助yangshu采纳,获得10
2秒前
自信的寄凡完成签到 ,获得积分20
3秒前
朴素臻完成签到,获得积分10
3秒前
可爱的小树苗完成签到,获得积分10
3秒前
4秒前
yeguo完成签到,获得积分10
4秒前
kenny完成签到,获得积分10
4秒前
轻舟空渡完成签到,获得积分10
4秒前
Mandy发布了新的文献求助10
4秒前
叶远望完成签到,获得积分10
4秒前
Daisy发布了新的文献求助10
5秒前
夕荀发布了新的文献求助10
5秒前
Min完成签到,获得积分10
6秒前
楠阿楠完成签到 ,获得积分10
6秒前
子车茗应助哇哈哈哈哈哈采纳,获得30
6秒前
6秒前
头哥应助MiManchi采纳,获得10
7秒前
李健应助zz采纳,获得10
7秒前
7秒前
7秒前
重楼远志完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
7秒前
Young应助时间采纳,获得10
8秒前
8秒前
小巧吐司完成签到,获得积分10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005