A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

影响力营销 计算机科学 社会化媒体 业务
作者
Rakesh Mallipeddi,Subodha Kumar,Chelliah Sriskandarajah,Yunxia Zhu
出处
期刊:Social Science Research Network 被引量:4
标识
DOI:10.2139/ssrn.3255198
摘要

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding, i.e., identification of influencers to optimally post a firm's message or advertisement, neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of the collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial-time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的忆南完成签到,获得积分10
刚刚
苗条的嘉熙完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
Sophiaaa发布了新的文献求助10
6秒前
Lucas应助欣慰外绣采纳,获得10
6秒前
aj'发布了新的文献求助10
6秒前
健壮不斜完成签到 ,获得积分10
8秒前
huco发布了新的文献求助10
8秒前
云云然完成签到,获得积分10
9秒前
fang完成签到 ,获得积分10
9秒前
数乱了梨花完成签到 ,获得积分10
10秒前
11秒前
TiAmo完成签到 ,获得积分10
14秒前
耍酷的棉花糖完成签到,获得积分10
16秒前
月月月鸟伟完成签到,获得积分10
16秒前
17秒前
strings发布了新的文献求助10
20秒前
七七完成签到 ,获得积分10
24秒前
不配.应助小眼儿采纳,获得10
25秒前
珊珊发布了新的文献求助10
25秒前
26秒前
zz完成签到 ,获得积分10
28秒前
31秒前
34秒前
默默千风发布了新的文献求助10
37秒前
韩瑶发布了新的文献求助10
37秒前
辜陈乐应助小眼儿采纳,获得10
40秒前
生物云完成签到,获得积分10
42秒前
46秒前
future完成签到 ,获得积分10
46秒前
suyan完成签到 ,获得积分10
48秒前
50秒前
木子完成签到 ,获得积分10
50秒前
52秒前
紧张的三问完成签到,获得积分10
52秒前
和谐的孱完成签到,获得积分10
53秒前
阿盛完成签到,获得积分10
53秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140266
求助须知:如何正确求助?哪些是违规求助? 2791039
关于积分的说明 7797809
捐赠科研通 2447561
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194