A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

影响力营销 选择(遗传算法) 社会营销 计算机科学 营销 业务 广告 市场营销管理 人工智能 关系营销
作者
Rakesh R. Mallipeddi,Subodha Kumar,Chelliah Sriskandarajah,Yunxia Zhu
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:35
标识
DOI:10.2139/ssrn.3255198
摘要

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding, i.e., identification of influencers to optimally post a firm's message or advertisement, neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of the collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial-time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pauchiu完成签到,获得积分10
刚刚
赘婿应助Lee采纳,获得10
刚刚
Zxj发布了新的文献求助10
1秒前
星尘幻剑完成签到,获得积分10
1秒前
CipherSage应助秦照荃采纳,获得10
1秒前
1秒前
1秒前
2秒前
lulu发布了新的文献求助10
2秒前
XXXXY完成签到,获得积分10
2秒前
cxt1346完成签到 ,获得积分10
3秒前
所所应助深巷南离木采纳,获得10
3秒前
3秒前
在水一方应助笙笙轩筱采纳,获得10
3秒前
pauchiu发布了新的文献求助10
3秒前
jasmine完成签到,获得积分10
3秒前
无奈的灵波完成签到,获得积分10
4秒前
wdm完成签到,获得积分20
4秒前
小送发布了新的文献求助10
5秒前
哈哈哈哈完成签到,获得积分10
5秒前
5秒前
JustinL发布了新的文献求助10
5秒前
BCLee发布了新的文献求助10
5秒前
xu完成签到,获得积分10
5秒前
asdfzxcv应助Sugarhm采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zgrmws应助随意采纳,获得10
6秒前
小二郎应助谢谢采纳,获得10
6秒前
7秒前
愉快白亦发布了新的文献求助10
7秒前
自然鸽子发布了新的文献求助10
7秒前
7秒前
桐桐应助七点半的闹钟采纳,获得10
7秒前
7秒前
赘婿应助Zxj采纳,获得10
7秒前
7秒前
悲凉的孤菱完成签到,获得积分10
8秒前
9秒前
科研通AI6应助WangYZ采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646155
求助须知:如何正确求助?哪些是违规求助? 4770208
关于积分的说明 15033403
捐赠科研通 4804753
什么是DOI,文献DOI怎么找? 2569195
邀请新用户注册赠送积分活动 1526252
关于科研通互助平台的介绍 1485762