A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

影响力营销 计算机科学 社会化媒体 业务
作者
Rakesh Mallipeddi,Subodha Kumar,Chelliah Sriskandarajah,Yunxia Zhu
出处
期刊:Social Science Research Network 被引量:4
标识
DOI:10.2139/ssrn.3255198
摘要

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding, i.e., identification of influencers to optimally post a firm's message or advertisement, neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of the collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial-time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雾散完成签到,获得积分10
1秒前
1秒前
隐形皮卡丘完成签到,获得积分10
1秒前
Astralis发布了新的文献求助10
2秒前
2秒前
little完成签到 ,获得积分10
2秒前
2秒前
LAOPIIII发布了新的文献求助10
3秒前
一口一个小面包完成签到,获得积分10
3秒前
小蘑菇应助Eric采纳,获得10
3秒前
4秒前
从容的香菇完成签到 ,获得积分10
4秒前
醍醐不醒发布了新的文献求助10
5秒前
5秒前
5秒前
肥波爱吃鱼完成签到,获得积分10
5秒前
二十五发布了新的文献求助10
6秒前
6秒前
隐形曼青应助Han采纳,获得10
6秒前
6秒前
7秒前
栖木发布了新的文献求助10
8秒前
我要发NCS发布了新的文献求助10
9秒前
111发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
178181发布了新的文献求助30
10秒前
敏感的曼香完成签到,获得积分10
10秒前
雲雀发布了新的文献求助10
10秒前
11秒前
领导范儿应助wcywd采纳,获得10
11秒前
12秒前
12秒前
Clash完成签到,获得积分10
12秒前
酷酷纸飞机完成签到,获得积分10
12秒前
11发布了新的文献求助10
13秒前
情怀应助panpan采纳,获得10
14秒前
穆独完成签到,获得积分10
15秒前
Shh发布了新的文献求助30
16秒前
2205277821发布了新的文献求助10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092