人工神经网络
非线性系统
趋同(经济学)
激活函数
计算机科学
功能(生物学)
应用数学
数学
数学优化
控制理论(社会学)
算法
人工智能
经济增长
量子力学
进化生物学
生物
物理
经济
控制(管理)
作者
Lin Xiao,Kenli Li,Zheng Tan,Zhijun Zhang,Bolin Liao,Ke Chen,Long Jin,Shuai Li
标识
DOI:10.1016/j.ipl.2018.10.004
摘要
For purpose of solving system of linear equations (SoLE) more efficiently, a fast convergent gradient neural network (FCGNN) model is designed and discussed in this paper. Different from the design of the conventional gradient neural network (CGNN), the design of the FCGNN model is based on a nonlinear activation function, and thus the better convergence speed can be reached. In addition, the convergence upper bound of the FCGNN model is estimated and provided in details. Simulative results validate the superiority of the FCGNN model, as compared to the CGNN model for finding SoLE.
科研通智能强力驱动
Strongly Powered by AbleSci AI