Comparison of Machine Learning Algorithms for the Power Consumption Prediction : - Case Study of Tetouan city –

计算机科学 机器学习 随机森林 支持向量机 人工智能 人工神经网络 决策树 反向传播 核(代数) 数据挖掘 算法 数学 组合数学
作者
Abdulwahed Salam,Abdelaaziz El Hibaoui
标识
DOI:10.1109/irsec.2018.8703007
摘要

Predicting electricity power consumption is an important task which provides intelligence to utilities and helps them to improve their systems' performance in terms of productivity and effectiveness. Machine learning models are the most accurate models used in prediction. The goal of our study is to predict the electricity power consumption every 10 minutes, and/or every hour with the determining objective of which approach is the most successful. To this end, we will compare different types of machine learning models that recently have gained popularity: feedforward neural network with backpropagation algorithm, random forest, decision tree, and support vector machine for regression (SVR) with radial basis function kernel. The parameters associated with the comparative models are optimized based on Grid-search method in order to find the accurate performance. The dataset that is used in this comparative study is related to three different power distribution networks of Tetouan city which is located in north Morocco. The historical data used has been taken from Supervisory Control and Data Acquisition system (SCADA) every 10 minutes for the period between 2017-01-01 and 2017- 12-31. The results indicate that random forest model achieved smaller prediction errors compared to their counterparts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无奈满天发布了新的文献求助10
1秒前
2秒前
MADKAI发布了新的文献求助10
2秒前
2秒前
贪玩丸子完成签到,获得积分10
2秒前
神勇的雅香应助liutaili采纳,获得10
3秒前
KSGGS完成签到,获得积分10
3秒前
YANG关注了科研通微信公众号
3秒前
4秒前
4秒前
4秒前
99发布了新的文献求助10
5秒前
5秒前
科研通AI5应助qi采纳,获得10
5秒前
乐乐发布了新的文献求助10
6秒前
铸一字错发布了新的文献求助10
6秒前
受伤书文完成签到,获得积分10
7秒前
Yvonne发布了新的文献求助10
7秒前
7秒前
温柔的十三完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
8秒前
nikai发布了新的文献求助10
8秒前
圣晟胜发布了新的文献求助10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
田様应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
Leif应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
shouyu29应助科研通管家采纳,获得10
9秒前
9秒前
小金应助科研通管家采纳,获得20
9秒前
牛逼的昂完成签到,获得积分10
9秒前
muzi给muzi的求助进行了留言
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759