Deep Learning for Predicting Dynamic Uncertain Opinions in Network Data

计算机科学 推论 可扩展性 人工智能 节点(物理) 违反直觉 动态网络分析 机器学习 数据挖掘 理论计算机科学 计算机网络 结构工程 数据库 认识论 工程类 哲学
作者
Xujiang Zhao,Feng Chen,Jin-Hee Cho
标识
DOI:10.1109/bigdata.2018.8622252
摘要

Subjective Logic (SL) is one of well-known belief models that can explicitly deal with uncertain opinions and infer unknown opinions based on a rich set of operators of fusing multiple opinions. Due to high simplicity and applicability, SL has been substantially applied in a variety of decision making in the area of cybersecurity, opinion models, trust models, and/or social network analysis. However, SL and its variants have exposed limitations in predicting uncertain opinions in real-world dynamic network data mainly in three-fold: (1) a lack of scalability to deal with a large-scale network; (2) limited capability to handle heterogeneous topological and temporal dependencies among node-level opinions; and (3) a high sensitivity with conflicting evidence that may generate counterintuitive opinions derived from the evidence. In this work, we proposed a novel deep learning (DL)-based dynamic opinion inference model while node-level opinions are still formalized based on SL meaning that an opinion has a dimension of uncertainty in addition to belief and disbelief in a binomial opinion (i.e., agree or disagree). The proposed DL-based dynamic opinion inference model overcomes the above three limitations by considering the following: (1) state-of-the-art DL techniques, such as the Graph Convolutional Network (GCN) and the Gated Recurrent Units (GRU), for modeling the topological and temporal heterogeneous dependency information of a given dynamic network; (2) modeling conflicting opinions based on robust statistics; and (3) a highly scalable inference algorithm to predict dynamic, uncertain opinions in a linear computation time. We validated the outperformance of our proposed DL-based algorithm (i.e., GCN-GRU-opinion model) via extensive comparative performance analysis based on a real-world dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张大恒完成签到,获得积分10
1秒前
X7完成签到,获得积分10
4秒前
5秒前
SGQT发布了新的文献求助10
5秒前
橘仔乐完成签到,获得积分10
8秒前
9秒前
洗剪吹发布了新的文献求助10
9秒前
wufang应助文件撤销了驳回
10秒前
叮咚完成签到,获得积分10
10秒前
开心的章鱼哥完成签到,获得积分10
10秒前
11秒前
11秒前
K寓完成签到,获得积分10
12秒前
12秒前
Singularity应助guositing采纳,获得20
12秒前
yyyyyyy完成签到,获得积分20
13秒前
英俊的铭应助dd采纳,获得10
15秒前
南屿汐月发布了新的文献求助20
15秒前
15秒前
15秒前
FashionBoy应助Owen采纳,获得10
17秒前
胡说八道完成签到 ,获得积分10
17秒前
yyyyyyy发布了新的文献求助10
17秒前
19秒前
小蘑菇应助of采纳,获得10
20秒前
20秒前
21秒前
七七八八发布了新的文献求助10
21秒前
清脆的白开水完成签到,获得积分10
23秒前
花无缺完成签到 ,获得积分10
23秒前
明理萝发布了新的文献求助10
24秒前
19完成签到,获得积分10
25秒前
华仔应助忧郁绣连采纳,获得10
26秒前
甜甜穆完成签到,获得积分10
27秒前
ChrisKim发布了新的文献求助10
27秒前
白白白完成签到 ,获得积分10
27秒前
桐桐应助洗剪吹采纳,获得10
27秒前
27秒前
学术老6完成签到 ,获得积分10
29秒前
在水一方应助顾的采纳,获得10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137922
求助须知:如何正确求助?哪些是违规求助? 2788820
关于积分的说明 7788709
捐赠科研通 2445219
什么是DOI,文献DOI怎么找? 1300219
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046