Unsupervised electric motor fault detection by using deep autoencoders

自编码 人工智能 计算机科学 模式识别(心理学) 新知识检测 支持向量机 深度学习 人工神经网络 无监督学习 断层(地质) 故障检测与隔离 卷积神经网络 多层感知器 机器学习 新颖性 地质学 哲学 神学 地震学 执行机构
作者
Emanuele Principi,Damiano Rossetti,Stefano Squartini,Francesco Piazza
出处
期刊:IEEE/CAA Journal of Automatica Sinica [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 441-451 被引量:171
标识
DOI:10.1109/jas.2019.1911393
摘要

Fault diagnosis of electric motors is a fundamental task for production line testing, and it is usually performed by experienced human operators. In the recent years, several methods have been proposed in the literature for detecting faults automatically. Deep neural networks have been successfully employed for this task, but, up to the authors' knowledge, they have never been used in an unsupervised scenario. This paper proposes an unsupervised method for diagnosing faults of electric motors by using a novelty detection approach based on deep autoencoders. In the proposed method, vibration signals are acquired by using accelerometers and processed to extract LogMel coefficients as features. Autoencoders are trained by using normal data only, i.e., data that do not contain faults. Three different autoencoders architectures have been evaluated: the multilayer perceptron (MLP) autoencoder, the convolutional neural network autoencoder, and the recurrent autoencoder composed of long short-term memory (LSTM) units. The experiments have been conducted by using a dataset created by the authors, and the proposed approaches have been compared to the one-class support vector machine (OC-SVM) algorithm. The performance has been evaluated in terms area under curve (AUC) of the receiver operating characteristic curve, and the results showed that all the autoencoder-based approaches outperform the OCSVM algorithm. Moreover, the MLP autoencoder is the most performing architecture, achieving an AUC equal to 99.11%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星旋完成签到,获得积分10
刚刚
1秒前
云中应助菠萝蜜采纳,获得20
1秒前
搜集达人应助纯真新筠采纳,获得10
1秒前
ww发布了新的文献求助10
1秒前
yu完成签到,获得积分10
2秒前
爆米花应助奔流的河采纳,获得10
2秒前
椰子在长江送礼物完成签到,获得积分0
2秒前
Cicy完成签到,获得积分10
3秒前
wykwhu完成签到,获得积分20
3秒前
唯梦发布了新的文献求助10
4秒前
田様应助lily采纳,获得30
4秒前
科研狗完成签到,获得积分10
4秒前
我是老大应助11111采纳,获得10
4秒前
wxs完成签到,获得积分10
4秒前
烟花应助文静煜城采纳,获得10
5秒前
棋士发布了新的文献求助10
5秒前
5秒前
涟涵发布了新的文献求助20
6秒前
彭于晏应助孙亦沈采纳,获得10
6秒前
可爱的函函应助宋宋采纳,获得10
6秒前
7秒前
点点完成签到 ,获得积分10
8秒前
wjfjs2cd完成签到,获得积分10
8秒前
香蕉觅云应助唯梦采纳,获得10
8秒前
CipherSage应助无私的书翠采纳,获得10
9秒前
11秒前
Rondab应助心杨采纳,获得10
11秒前
张小枚发布了新的文献求助10
12秒前
12秒前
小鱼奈子完成签到,获得积分10
13秒前
Akim应助zzzzzz采纳,获得10
13秒前
风雨琳琅完成签到,获得积分10
13秒前
彪yu发布了新的文献求助10
13秒前
15秒前
费城青年完成签到,获得积分10
16秒前
小鱼奈子发布了新的文献求助10
16秒前
11111发布了新的文献求助10
16秒前
调皮铸海完成签到,获得积分10
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954873
求助须知:如何正确求助?哪些是违规求助? 3500946
关于积分的说明 11101499
捐赠科研通 3231364
什么是DOI,文献DOI怎么找? 1786402
邀请新用户注册赠送积分活动 870037
科研通“疑难数据库(出版商)”最低求助积分说明 801771