化学
气相色谱-质谱法
发酵
丹宁
代谢组学
食品科学
色谱法
气相色谱法
质谱法
背景(考古学)
生物
古生物学
作者
Oluwafemi Ayodeji Adebo,Eugénie Kayitesi,Fidele Tugizimana,Patrick Berka Njobeh
标识
DOI:10.1016/j.foodres.2019.03.050
摘要
Fermented whole grain (WG) sorghum food products including WG-ting can be obtained from different sample sources and fermentation conditions, leading subsequently to variations in the molecular composition of the products. There is however, a lack of detailed understanding and description of differential molecular profiles of these food products. Thus, the current study is a nontargeted gas chromatography-mass spectrometry (GC–MS)-based metabolomics approach to descriptively elucidate metabolic profiles of two WG-sorghum types [high tannin (HT) and low tannin (LT)] and their derived WG-ting products obtained via fermentation. Metabolites were extracted with 80% aqueous methanol and analyzed on a gas chromatography high resolution time of flight mass spectrometry (GC-HRTOF-MS) system. Chemometric methods such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to mine the generated data. Our results showed that tannin contents influenced the composition of the raw sorghum and derived WG-ting samples. Metabolite signatures that differentiated raw HT- and LT-sorghum included cyclic compounds, pesticides, 2,4-di-tert-butylphenol, fatty acid esters, and sugar derivatives. Furthermore, fermentation of the HT- and LT-sorghum into WG-ting led to an increase in the levels of fatty acids, fatty acid esters and some other compounds which are vital from a dietary and health context. Equally observed were reduction of some phenols, cyclic compounds, a pesticide and ketone. Thus, the results demonstrated that the inherent metabolic composition of raw sorghum would lead to differential metabolic changes in the fermented products such as WG-ting, with subsequent dietary and health implications. Fermenting ting with Lactobacillus fermentum FUA 3321 was most desirable as relevant metabolites were observed in both HT- and LT-ting samples. Furthermore, the study highlights the applicability of GC–MS metabolomics in understanding WG-ting fermentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI