General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks

静息状态功能磁共振成像 功能连接 神经科学 心理学 功能磁共振成像 任务(项目管理) 动态功能连接 计算机科学 认知心理学 经济 管理
作者
Maxwell L. Elliott,Avshalom Caspi,Megan E. Cooke,M. Justin Kim,Tracy R. Melzer,Ross Keenan,David Ireland,Sandhya Ramrakha,Richie G Poulton,Terrie E. Moffitt,Ahmad R. Hariri
出处
期刊:NeuroImage [Elsevier]
卷期号:189: 516-532 被引量:155
标识
DOI:10.1016/j.neuroimage.2019.01.068
摘要

Abstract Intrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations, many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Connectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data alone. Furthermore, at equivalent scan lengths, GFC displayed higher estimates of heritability than resting-state functional connectivity. We also found that predictions of cognitive ability from GFC generalized across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic connectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
刚刚
科研通AI5应助一一采纳,获得10
1秒前
大大小小发布了新的文献求助10
1秒前
1秒前
小黄完成签到,获得积分20
1秒前
2秒前
bkagyin应助AndyLin采纳,获得10
2秒前
芒果不芒完成签到,获得积分10
4秒前
4秒前
在水一方应助honey采纳,获得10
7秒前
科研通AI5应助慈祥的绮兰采纳,获得10
7秒前
狗狗举报锦蓁求助涉嫌违规
7秒前
科研通AI5应助zengyangyu采纳,获得10
8秒前
丫头发布了新的文献求助20
8秒前
fsm完成签到,获得积分20
9秒前
Transient发布了新的文献求助30
12秒前
14秒前
负减淇完成签到,获得积分20
15秒前
16秒前
丘比特应助小王采纳,获得30
16秒前
18485649437发布了新的文献求助10
17秒前
gggqh完成签到,获得积分10
17秒前
尚子琨发布了新的文献求助10
18秒前
科研通AI5应助夕十采纳,获得10
19秒前
酱攸完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
Lee完成签到,获得积分10
21秒前
传奇3应助aojuan采纳,获得10
21秒前
昵称发布了新的文献求助10
21秒前
ZSWAA发布了新的文献求助10
21秒前
21秒前
jane应助cola采纳,获得10
23秒前
阳光襄完成签到,获得积分20
24秒前
无限雨南发布了新的文献求助10
24秒前
一一发布了新的文献求助10
25秒前
25秒前
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
读者个体因素对汉语阅读中眼动行为的影响 710
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560199
求助须知:如何正确求助?哪些是违规求助? 3134388
关于积分的说明 9407104
捐赠科研通 2834515
什么是DOI,文献DOI怎么找? 1558139
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716582