可视化
可解释性
计算机科学
聚类分析
降维
数据可视化
水准点(测量)
数据挖掘
软件
可扩展性
人工智能
相似性(几何)
核(代数)
数学
数据库
图像(数学)
组合数学
程序设计语言
地理
大地测量学
作者
Bo Wang,Junjie Zhu,Emma Pierson,Daniele Ramazzotti,Serafim Batzoglou
出处
期刊:Nature Methods
[Springer Nature]
日期:2017-03-06
卷期号:14 (4): 414-416
被引量:647
摘要
The SIMLR software identifies similarities between cells across a range of single-cell RNA-seq data, enabling effective dimension reduction, clustering and visualization. We present single-cell interpretation via multikernel learning (SIMLR), an analytic framework and software which learns a similarity measure from single-cell RNA-seq data in order to perform dimension reduction, clustering and visualization. On seven published data sets, we benchmark SIMLR against state-of-the-art methods. We show that SIMLR is scalable and greatly enhances clustering performance while improving the visualization and interpretability of single-cell sequencing data.
科研通智能强力驱动
Strongly Powered by AbleSci AI