肝细胞癌
化学
磁共振成像
六氯环己烷
对比度(视觉)
氧化铁
对比度增强
磁共振造影剂
纳米颗粒
核磁共振
钆
癌症研究
纳米技术
放射科
材料科学
光学
医学
有机化学
物理
作者
Jingxiong Lu,Jihong Sun,Fangyuan Li,Jin Wang,Jianan Liu,Dokyoon Kim,Chunhai Fan,Taeghwan Hyeon,Daishun Ling
摘要
Iron oxide nanoparticle (IONP)-based magnetic resonance imaging (MRI) contrast agents have been widely used for the diagnosis of hepatic lesions. However, current IONP-based liver-specific MRI contrast agents rely on single-phase contrast enhancement of the normal liver, which is not sensitive enough to detect early stage small hepatocellular carcinomas (HCCs). We herein report i-motif DNA-assisted pH-responsive iron oxide nanocluster assemblies (termed RIAs), which provide an inverse contrast enhancemt effect to improve the distinction between normal liver and target HCC tissues. The acidic pH of the tumor microenvironment triggers the disassembly of the RIAs, which leads to a drastic decrease in their relaxivity ratio (r2/r1), thus converting the RIAs from a T2 to T1 contrast agent. This inverse contrast enhancement of normal liver darkening and HCC brightening under T1 imaging mode was validated on an orthotopic HCC model. Our design provides a novel strategy for the exploitation of the next-generation intelligent MRI contrast agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI