A global manifold margin learning method for data feature extraction and classification

歧管对齐 模式识别(心理学) 非线性降维 降维 计算机科学 歧管(流体力学) 图形 人工智能 统计流形 不变流形 线性判别分析 子空间拓扑 数据点 边距(机器学习) 特征提取 数学 理论计算机科学 机器学习 纯数学 工程类 信息几何学 机械工程 标量曲率 曲率 几何学
作者
Bo Li,Wei Guo,Xiaolong Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:75: 94-101 被引量:12
标识
DOI:10.1016/j.engappai.2018.08.004
摘要

This paper presents a global manifold margin learning approach for data feature extraction or dimensionality reduction, which is named locally linear representation manifold margin (LLRMM). Provided that points locating on one manifold are of the same class and those residing on the corresponding manifolds are varied labeled, LLRMM is desired to identify different manifolds, respectively. In the proposed LLRMM, it firstly constructs both a between-manifold graph and a within-manifold graph. In the between-manifold graph, for any point, its k nearest neighbors and itself must belong to different manifolds. However, any node and its neighborhood points should be on the same manifold in the within-manifold graph. Then we use the minimum locally linear representation trick to reconstruct any node with their corresponding k nearest neighbors in both graphs, from which a between-manifold graph scatter and a within-manifold graph scatter can be reasoned, followed by a novel global model of manifold margin. At last, a projection will be explored to map the original data into a low dimensional subspace with the maximum manifold margin. Experiments on some widely used face data sets including AR, CMU PIE, Yale, YaleB and LFW have been carried out, where the performance of the proposed LLRMM outperforms those of some other methods such as kernel principal component analysis (KPCA), non-parametric discriminant analysis (NDA), reconstructive discriminant analysis (RDA), discriminant multiple manifold learning (DMML) and large margin nearest neighbor (LMNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助wu采纳,获得10
1秒前
苞米粒粒完成签到,获得积分10
1秒前
T_KYG完成签到,获得积分10
1秒前
思量博千金完成签到,获得积分10
1秒前
之后再说咯完成签到 ,获得积分10
3秒前
3秒前
Phil发布了新的文献求助10
4秒前
美丽的怀蕊完成签到,获得积分10
6秒前
苛帅发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
亮亮完成签到 ,获得积分10
8秒前
8秒前
充电宝应助长策硕贤采纳,获得10
10秒前
HYT完成签到,获得积分10
11秒前
huangyao发布了新的文献求助10
13秒前
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
Owen应助小小K采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
Logan应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
zizi完成签到 ,获得积分10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
16秒前
熬夜波比应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675761
求助须知:如何正确求助?哪些是违规求助? 4948864
关于积分的说明 15154614
捐赠科研通 4835061
什么是DOI,文献DOI怎么找? 2589850
邀请新用户注册赠送积分活动 1543573
关于科研通互助平台的介绍 1501325