亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A global manifold margin learning method for data feature extraction and classification

歧管对齐 模式识别(心理学) 非线性降维 降维 计算机科学 歧管(流体力学) 图形 人工智能 统计流形 不变流形 线性判别分析 子空间拓扑 数据点 边距(机器学习) 特征提取 数学 理论计算机科学 机器学习 纯数学 工程类 信息几何学 机械工程 标量曲率 曲率 几何学
作者
Bo Li,Wei Guo,Xiaolong Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:75: 94-101 被引量:12
标识
DOI:10.1016/j.engappai.2018.08.004
摘要

This paper presents a global manifold margin learning approach for data feature extraction or dimensionality reduction, which is named locally linear representation manifold margin (LLRMM). Provided that points locating on one manifold are of the same class and those residing on the corresponding manifolds are varied labeled, LLRMM is desired to identify different manifolds, respectively. In the proposed LLRMM, it firstly constructs both a between-manifold graph and a within-manifold graph. In the between-manifold graph, for any point, its k nearest neighbors and itself must belong to different manifolds. However, any node and its neighborhood points should be on the same manifold in the within-manifold graph. Then we use the minimum locally linear representation trick to reconstruct any node with their corresponding k nearest neighbors in both graphs, from which a between-manifold graph scatter and a within-manifold graph scatter can be reasoned, followed by a novel global model of manifold margin. At last, a projection will be explored to map the original data into a low dimensional subspace with the maximum manifold margin. Experiments on some widely used face data sets including AR, CMU PIE, Yale, YaleB and LFW have been carried out, where the performance of the proposed LLRMM outperforms those of some other methods such as kernel principal component analysis (KPCA), non-parametric discriminant analysis (NDA), reconstructive discriminant analysis (RDA), discriminant multiple manifold learning (DMML) and large margin nearest neighbor (LMNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲线完成签到,获得积分10
8秒前
科研通AI6应助zhdhh采纳,获得10
13秒前
无奈的靖仇完成签到,获得积分10
15秒前
17秒前
45秒前
呼延水云发布了新的文献求助10
50秒前
要减肥的胖子应助周周采纳,获得10
50秒前
58秒前
科研通AI6应助George采纳,获得10
1分钟前
斯文败类应助Aurora采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
Ade107发布了新的文献求助10
1分钟前
1分钟前
宓广缘完成签到 ,获得积分10
1分钟前
应寒年完成签到 ,获得积分10
1分钟前
Ava应助靓丽的珊珊采纳,获得10
1分钟前
1分钟前
1分钟前
carols发布了新的文献求助10
1分钟前
小马甲应助Ade107采纳,获得10
1分钟前
Thi发布了新的文献求助10
2分钟前
靓丽衫完成签到 ,获得积分10
2分钟前
qiuzhiri完成签到,获得积分10
2分钟前
小二郎应助George采纳,获得10
2分钟前
2分钟前
2分钟前
在水一方应助qiuzhiri采纳,获得10
2分钟前
Nightfall发布了新的文献求助10
2分钟前
善学以致用应助LALA采纳,获得10
2分钟前
包容远山完成签到,获得积分10
2分钟前
在水一方应助陈大仙采纳,获得10
2分钟前
科研通AI2S应助Nightfall采纳,获得10
2分钟前
George发布了新的文献求助10
2分钟前
爆米花应助无奈的靖仇采纳,获得10
2分钟前
2分钟前
2分钟前
LALA发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639537
求助须知:如何正确求助?哪些是违规求助? 4748939
关于积分的说明 15006656
捐赠科研通 4797713
什么是DOI,文献DOI怎么找? 2563741
邀请新用户注册赠送积分活动 1522710
关于科研通互助平台的介绍 1482425